首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously reported that the synthesis of NeuAc(alpha 2-3)Gal(beta 1-4)GlcCer (GM3) ganglioside was preferentially enhanced during the differentiation of HL-60 cells into a monocyte/macrophage lineage induced by 12-O-tetradecanoylphorbol-13-O-acetate (TPA). Since exogenously added GM3 ganglioside was shown to be able to induce the differentiation of HL-60 cells into the monocyte/macrophage lineage in a synthetic medium, the functional role of the GM3 ganglioside increase during the differentiation of HL-60 cells has become the subject of much interest. In the present study, we investigated the activity of CMP-NeuAc:lactosylceramide sialyltransferase, which catalyzes the synthesis of GM3 ganglioside from lactosylceramide, in cells undergoing differentiation induced by two different reagents, TPA and 1 alpha,25-dihydroxy-vitamin D3, which induce the differentiation of HL-60 cells into the monocyte/macrophage lineage through different modes of action. We showed that the activation of CMP-NeuAc:lactosylceramide sialyltransferase and the increase in GM3 ganglioside were not related to the differentiated lineage but to the specific action of TPA, i.e. activation of protein kinase C.  相似文献   

3.
We studied fatty acid changes that are likely to occur during phorbolmyristate acetate (PMA)-induced differentiation of HL-60 cells. It was observed that PMA-induced differentiation is associated with increased uptake, but not synthesis, of fatty acids. Fatty acid analysis revealed that arachidonic acid (AA), 20:5 n-3 and 22:6 n-3 levels are reduced with a concomitant increase in 22:5 n-6 in the phospholipid fraction. In the FFA fraction there are increases in free AA, free 20:5 n-3, 22:5 n-3 and 22:6 n-3, and a fall in free 22:5 n-6 in PMA-treated cells. PMA-induced differentiation and nitroblue tetrazolium reduction by PMA-treated cells was only partially inhibited (about 20-30%) by indomethacin and nordihydroguiaretic acid (cyclooxygenase and lipoxygenase inhibitors respectively), but not by superoxide dismutase, catalase or mannitol. These results indicate that PMA-induced differentiation of HL-60 cells is accompanied by specific changes in the fatty acid composition of the cells.  相似文献   

4.
To clarify the role of protein kinase C and protein kinase A in cell proliferation and differentiation, the effects of K252a and its derivatives (K252b, KT5720), which have different inhibitory activity to these protein kinases, on the proliferation and differentiation of HL-60 cells were investigated. The proliferation and DNA synthesis of the HL-60 cells were inhibited by K252a in a dose dependent manner. However, K252b and KT5720 which are more specific inhibitors of protein kinase C or protein kinase A, respectively, had no observable effect on cell proliferation. K252a (40nM) enhanced the differentiation of HL-60 cells induced by 1,25(OH)2D3, retinoic acid and DMSO. K252b and KT5720 did not affect 1,25(OH)2D3-induced differentiation. K252a significantly inhibited the differentiation induced by PMA. These results demonstrate that K252a but not its derivatives can function as an antitumor drug and enhancer of the differentiation induced by various inducers.  相似文献   

5.
G K Sing  S Prior  A Fernan    G Cooksley 《Journal of virology》1993,67(6):3454-3460
The hematopoietic cell lines HL-60 and THP-1 were challenged with hepatitis B virus (HBV) in vitro to study interactions between the virus and host cell. Exposure to HBV suppressed the ability of HL-60 cells to differentiate into granulocytes after treatment with retinoic acid (RA) or dimethyl sulfoxide (DMSO), and RA-induced activation of the monocytic cell line THP-1 was also suppressed. Terminal differentiation of both cell lines by phorbol 12-myristate 13-acetate (PMA) was not affected by HBV. The suppressive effect on RA- or DMSO-induced differentiation was unique to HBV, since cell exposure to human cytomegalovirus, another virus that inhibits hematopoiesis, failed to block cellular differentiation. At 5 days postinfection, extracellular viral DNA was detected in immature but not in differentiated cultures and higher levels of core antigen (HBcAg) and surface antigen (HBsAg) were seen in undifferentiated cells than in RA- or PMA-treated cells. In addition, release of HBsAg into the medium was 2 to 12 times greater in untreated cultures than for RA- or PMA-treated cells. Thus, HBV suppresses hematopoiesis by blocking the maturational development of progenitors and selectively infects immature myeloid cells compared with mature end-stage cells.  相似文献   

6.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.  相似文献   

7.
Conditioned medium from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix induces macrophage-like differentiation of fresh HL-60 cells. The active medium component is sensitive to protease treatment, indicating that it is a protein, but it is heat stable. Conditioned medium from HL-60 cells grown on protease-treated bone marrow matrix still contains the active component. Thus, it appears that the differentiation-inducing protein is produced by HL-60 cells and is not released from the bone marrow matrix. To identify this differentiation factor, RNA was isolated from HL-60 cells grown on bone marrow matrix and assayed by Northern analysis for expression of mRNA for human differentiation factor, tumor necrosis factor, and macrophage colony-stimulating factor, all inducers of monocyte/macrophage differentiation. Expression of differentiation factor, tumor necrosis factor, or macrophage colony-stimulating factor mRNA was not enhanced in HL-60 cells grown on matrix compared to cells grown on uncoated plastic flasks. Thus, the maturation factor does not appear to be differentiation factor, tumor necrosis factor, or macrophage colony-stimulating factor within the limits of detection of Northern analysis. Elution of the active conditioned medium fraction on a Sephacryl S-200 column revealed a molecular weight of approximately 40,000. The active protein eluted on a DEAE-cellulose ion-exchange column at an ionic strength of 0.3 M NaCl, indicating that it is fairly anionic. Thus, bone marrow matrix is able to induce HL-60 cells to produce a maturation-inducing 40 kilodalton protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary Retinoic acid is known to cause the myeloid differentiation and G1/0 cell cycle arrest of HL-60 cells in a process that requires mitogen-activated protein/extracellular signal regulated kinase (MEK)-dependent extracellular signal regulated kinase (ERK)2 activation. It has also been shown that ectopic expression of cFMS, a platelet-derived growth factor (PDGF)-family transmembrane tyrosine kinase receptor, enhances retinoic acid-induced differentiation and G1/0 arrest. The mechanism of how the retinoic acid and cFMS signaling pathways intersect is not known. The present data show that the ectopic expression of cFMS results in the differential loss of sensitivity of retinoic acid-induced differentiation or G1/0 arrest to inhibition of ERK2 activation. PD98059 was used to inhibit MEK and consequently ERK2. In wild-type HL-60 cells, PD98059 blocked retinoic acid-induced differentiation; but in cFMS stable transfectants, PD98059 only attenuated the induced differentiation, with the resulting response resembling that of retinoic acid-treated wild-type HL-60. In wild-type HL-60, PD98059 greatly attenuated the retinoic acid-induced G1/0 arrest allied with retinoblastoma (RB) hypophosphorylation; but in cFMS stable transfectants, PD98059 had no inhibitory effect on RB hypophosphorylation and G1/0 arrest. This differential sensitivity to PD98059 and uncoupling of retinoic acid-induced differentiation and G1/0 arrest in cFMS transfectants is associated with changes in mitogen-activated protein kinase signaling molecules. The cFMS transfectants had more activated ERK2 than did the wild-type cells, which surprisingly was not attributable to enhanced mitogen-activated protein-kinase-kinase-kinase (RAF) phosphorylation. Retinoic acid increased the amount of activated ERK2 and phosphorylated RAF in both cell lines. But PD98059 eliminated detectable ERK2 activation, as well as inhibited RAF phosphorylation, in untreated and retinoic acid-treated wild-type HL-60 and cFMS transfectants, consistent with MEK or ERK feedback-regulation of RAF, in all four cases. Since PD98059 blocks the cFMS-conferred enhancement of the retinoic acid-induced differentiation, but not growth arrest, the data indicate that cFMS-enhanced differentiation acts primarily through MEK and ERK2, but cFMS-enhanced G1/0 arrest allied with RB hypophosphorylation depends on another cFMS signal route, which by itself can effect G1/0 arrest without activated ERK2. Ectopic expression of cFMS and differential sensitivity to ERK2 inhibition thus reveal that retinoic acid-induced HL-60 cell differentiation and G1/0 arrest are differentially dependent on ERK2 and can be uncoupled. A significant unanticipated finding was that retinoic acid caused a MEK-dependent increase in the amount of phosphorylated RAF. This increase may help sustain prolonged ERK2 activation.  相似文献   

9.
Phorbol 12-myristate 13-acetate (PMA) induces differentiation of human leukemic HL-60 cells into cells with macrophage-like characteristics and enhances the susceptibility of HL-60 cells to the Helicobacter pylori VacA toxin (de Bernard, M., Moschioni., M., Papini, E., Telford, J. L., Rappuoli, R., and Montecucco, C. (1998) FEBS Lett. 436, 218-222). We examined the mechanism by which HL-60 cells acquire sensitivity to VacA, in particular, looking for expression of RPTPbeta, a VacA-binding protein postulated to be the VacA receptor (Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., Aoyagi, H., Kurazono, H., Imagawa, K., Wada, A., Moss, J., and Hirayama, T. (1999) J. Biol. Chem. 274, 36693-36699). PMA induced expression of RPTPbeta mRNA and protein as determined by RNase protection assay and indirect immunofluorescence studies, respectively. Vitamin D(3) and interferon-gamma, which stimulate differentiation of HL-60 cells into monocyte-like cells, also induced VacA sensitivity and expression of RPTPbeta mRNA, whereas 1. 2% Me(2)SO and retinoic acid, which stimulated the maturation of HL-60 into granulocyte-like cells, did not. RPTPbeta antisense oligonucleotide inhibited induction of VacA sensitivity and expression of RPTPbeta. Double immunostaining studies also indicated that newly expressed RPTPbeta colocalized with VacA in PMA-treated HL-60 cells. In agreement with these data, BHK-21 cells, which are insensitive to VacA, when transfected with the RPTPbeta cDNA, acquired VacA sensitivity. All data are consistent with the conclusion that acquisition of VacA sensitivity by PMA-treated HL-60 cells results from induction of RPTPbeta, a protein that functions as the VacA receptor.  相似文献   

10.
Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.  相似文献   

11.
Anthrax lethal toxin (LT) is comprised of protective antigen and lethal factor. Lethal factor enters mammalian cells in a protective antigen-dependent process and cleaves mitogen-activated protein kinase kinases. Although LT has no observable effect on many cell types, it causes necrosis in macrophages derived from certain mouse strains and apoptosis in activated mouse macrophages. In this study, we observed that LT treatment of three different human monocytic cell lines U-937, HL-60 and THP-1 did not induce cell death. Cells did become susceptible to the toxin, however, after differentiation into a macrophage-like state. Treatment with LT resulted in decreased phosphorylation of p38, ERK1/2 and JNK in both undifferentiated and differentiated HL-60 cells, suggesting that the change in susceptibility does not result from differences in toxin delivery or substrate cleavage. Death of differentiated HL-60 cells was accompanied by chromosome condensation and DNA fragmentation, but was not inhibited by the pan-caspase inhibitor Z-VAD-FMK. In addition, we observed that the macrophage differentiation process could be inhibited by LT. Our results indicate that LT-mediated death of mouse and human macrophages may occur through distinct processes and that the differentiation state of human cells can determine susceptibility or resistance to LT.  相似文献   

12.
The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation.  相似文献   

13.
14.
The HL-60 cell line, established from a patient with acute promyelocytic leukemia, can be induced to undergo differentiation along the granulocyte or monocyte/macrophage line, depending on the particular inducer that is used. In this communication we provide evidence that HL-60 cells also have B lymphoid characteristics because by flow cytometry and clonal excess calculations, these cells are found to express immunoglobulin (Ig) lambda light chains on their surface. Furthermore, HL-60 cells contain poly(A)+ RNA that hybridizes with a DNA fragment encoding the constant region of Ig lambda chains and comigrates with lambda mRNA on RNA blots. Treatment of HL-60 cells with a phorbol ester that induces monocyte/macrophage differentiation resulted in the loss of surface Ig lambda chains and lambda RNA.  相似文献   

15.
16.
CD157/BST-1 is expressed on mature myeloid cells but not on their precursors in vivo. Also CD38, a homologous gene to CD157, is upregulated in promyelocytic HL-60 cells by the monocyte and granulocyte differentiation-inducing 1alpha,25dihydroxyvitamin D3 (VD3) and all-trans retinoic acid (ATRA), respectively. We have examined whether CD157 expression is upregulated when the promyeloid HL-60 and/or U937 cells are induced to differentiate into mature phenotypes in vitro. VD3 treatment irreversibly upregulated the expression of CD157 in HL-60 cells but not in U937 cells in a time- and concentration-dependent manner when analyzed by flow cytometry, immunoblotting and/or RT-PCR. Different monocyte and granulocyte lineage inducers induced CD157 expression to varying extents while the macrophage differentiation-inducing phorbol 12-myristate 13-acetate (PMA) induced its down-regulation. Time-kinetics of VD3 treatment of HL-60 cells showed that the appearance of CD157 and CD11b (a differentiation marker) antigens were not substantial up to 24 hours but increased subsequently although the appearance of CD38 became significant within 6 hours. Two-color staining of VD3-treated HL-60 cells displayed an apparently linear correlation between CD157 and CD11b expression. Dibutyryl cAMP (cAMP agonist) and forskolin (cAMP-increasing agent) augmented the VD3-dependent induction of CD157 and CD11b expression while PGE1 (cAMP-decreasing agent) inhibited it, suggesting the involvement of a cAMP-dependent mechanism in VD3-induced CD157 upregulation. Co-treatment of HL-60 cells with VD3 plus TNF-alpha or ara-C produced an additive effect on CD157 upregulation. The upregulated CD157 in the VD3-differentiated HL-60 cells was able to activate CD157-dependent tyrosine kinase signal when cross-linked with anti-CD157 antibody.  相似文献   

17.
Treatment of five human myeloid leukemic cell lines (KG1, ML3, HL-60, U-937, and HEL) with TPA was followed by macrophage differentiation and was accompanied by an early and transient increase in the mRNA level of c-fos proto-oncogene. The induction of c-fos was also observed in human cell lines K562 and K-Gla that did not respond to TPA with terminal macrophage differentiation. The treatment of HL-60 and U-937 cell lines with 1-oleoyl-2-acetylglycerol, a synthetic analog of diacylglycerol that, like TPA, stimulates protein kinase C activity, was followed by early and transient induction of c-fos mRNA in the absence of terminal macrophage differentiation. Finally, treatment of HL-60 with TPA in the presence of retinal, an inhibitor of protein kinase C, drastically reduced the induction of c-fos mRNA but had no effect on the terminal macrophage differentiation that is induced in this cell line by TPA. These results indicate that the induction of c-fos and terminal macrophage differentiation in response to TPA treatment can be dissociated in the in vitro models provided by human myeloid leukemic cell lines. Moreover, these findings suggest that the induction of c-fos is not only insufficient but may also be unnecessary for the differentiation along the monocyte-macrophage pathway.  相似文献   

18.
In the presence of 1 nM retinoic acid (RA), pentobarbital markedly enhanced differentiation of HL-60 cells to granulocytic cells. In the absence of RA, pentobarbital by itself did not induce cell differentiation. Similarly, pentobarbital enhanced the action of 1,25-dihydroxyvitamin D3 to induce differentiation of HL-60 cells into monocyte/macrophage lineage. The potency of various barbiturates to enhance cell differentiation was closely correlated with their activity to inhibit protein kinase C of HL-60 cells. In contrast to staurosporine, however, barbiturates did not affect the action of differentiation inducers of other types such as dimethyl sulfoxide, dibutyryl cyclic AMP or actinomycin D.  相似文献   

19.
Thrombin, a major procoagulant enzyme and growth factor, is also selectively chemotactic for monocytes and macrophages but not for neutrophils. This effect stands in contrast to other well-known chemotactic agents such as fMet-Leu-Phe, C5a fragments, and LTB4, which stimulate directed cell movement in both cell types, and have important physiological implications. The human leukemic cell line HL-60, which is capable of differentiating either along granulocytic or monocytic lineages, was therefore used to explore the development of this selective monocyte/macrophage chemotactic response to thrombin. Esterolytically inactive DIP-alpha-thrombin, as well as the thrombin-derived chemotactic peptide CB67-129, elicits a dose-dependent chemotactic response in HL-60 cells differentiated to monocytelike cells by treatment with 1,25(OH)2D3 (HL-60/mono), whereas no such response is evident in either undifferentiated HL-60 cells or in cells differentiated into granulocytes by treatment with DMSO (HL-60/gran). Similarly, early events which characterize stimulation of inflammatory cells by chemotactic agents are also evident, but only in monocyte-differentiated cells. In HL-60/mono, thrombin selectively stimulates rapid cytosolic Ca2+ elevation as well as rapid cytoskeletal association of cytosolic actin. Following thrombin stimulation, maximal actin association in these cells occurs within 30 sec (declining to basal levels at the end of 5 min), and maximal Ca2+ elevations are also evident within 15-20 sec, suggesting a temporal relationship between these two events. Thus, the events accompanying stimulation of HL-60/mono by thrombin are characteristic of those seen following stimulation of inflammatory cells by chemotaxins, with a major difference being the selectivity of thrombin as a chemotaxin for cells of macrophage/monocytic lineage. The selective chemotactic responsiveness of HL-60/mono to thrombin appears to relate to the development of specific receptors on these cells as part of monocytic differentiation: HL-60/mono (but HL-60/gran nor undifferentiated HL-60) are capable of significant specific 125-I-labeled alpha-thrombin-binding (ka approximately 20 nM), and possess an estimated 400,000 thrombin-binding sites per cell. Our findings further suggest that the thrombin response of HL-60 and particularly the expression of thrombin receptors on these cells may serve as a useful model system for exploring the biology of monocyte/macrophage differentiation.  相似文献   

20.
We previously demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as oxidative stress, ionizing radiation and TNF-receptor-induced ligand (TRAIL) compared with vector-transfected (HL-60/Vect) cells. Here, we show that HL-60/FAK cells are highly resistant to all-trans retinoic acid (ATRA)-induced differentiation, whereas original HL-60 or HL-60/Vect cells are sensitive. Treatment with ATRA at 1 muM for 5 days markedly inhibited the proliferation and increased the expression of differentiation markers (CD38, CD11b) in HL-60/Vect cells, but showed no such effect in HL-60/FAK cells. Electrophoretic mobility shift assay (EMSA) using an oligonucleotide for the c/EBP consensus binding sequence showed that c/EBPalpha was activated in ATRA-treated HL-60/Vect cells but not in HL-60/FAK cells, indicating that c/EBPalpha activation by ATRA was impaired in HL-60/FAK cells. In addition, the association of retinoblastoma protein (pRb) and c/EBPalpha after treatment with ATRA was seen in HL-60/Vect cells but not in HL-60/FAK cells. Further, hyperphosphorylation of pRb was observed in HL-60/FAK cells. Finally, the introduction of FAK siRNA into HL-60/FAK cells resulted in the recovery of sensitivity to ATRA-induced differentiation, confirming that the inhibition of HL-60/FAK differentiation resulted from both the induction of pRb hyperphosphorylation and the inhibition of association of pRb and c/EBPalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号