首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At a number of slaughters nephropathy and high ochratoxin A contents in kidneys have been observed in fattening pigs from two Swedish farms. In one herd the source of contamination was barley grown on the home farm and stored under such conditions that the growth of fungal species (Penicillium verrucosum var. verrucosum) producing ochratoxin A occurred, with the subsequent formation of the toxin. In this case high ochratoxin A levels in fattening pigs were found during a period of about 18 months. In the second herd, where compounded feed was used, it was impossible to locate the source of contamination. It was presumed that a consignment of feed was damaged by rain during storage at the farm. Ochratoxin A was found in fattening pigs from this herd for a period of about 2 months. Ochratoxin A appeared in the kidneys of all investigated pigs. In some animals the livers, whole blood, and plasma were analyzed, too. The livers contained somewhat lower amounts of ochratoxin A than the kidneys, whereas the content in whole blood and plasma, respectively, was 5 and 13 times greater. Kidneys spontaneously contaminated with ochratoxin A, when stored for 10 months at -70 degrees C, showed no systematic decrease in toxin content.  相似文献   

2.
Accumulated dust samples were collected from the heating ducts in a household where signs resembling ochratoxin poisoning in animals occurred. Several Penicillium spp. and Aspergillus ochraceous had been identified previously from air samples taken from this house. A composite sample from six collected samples was examined by HPLC, and it was determined that 58 ppb of ochratoxin A was present in this sample. A second set of six samples was collected and determinations were made by HPLC of the ochratoxin content in each sample. All samples, including one sample of dirt from a crawl space, yielded at least a trace of ochratoxin A; however, one sample of dust collected from the heating ducts yielded over 1500 ppb of ochratoxin A, and another sample of dust from a different heating duct yielded 306 ppb of ochratoxin A. Ochratoxin A was confirmed in all samples by LC-MS, and ochratoxin was evident in the samples by TLC analysis. This is believed to be the first report of finding ochratoxin inhouse dust. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Ochratoxin A contamination of cereal feed grain was monitored during October 1989–September 1990 by analysis of blood samples from slaughter swine in Sweden. The detection of ochratoxin A in swine blood was used as a method to identify swine herds fed ochratoxin A contaminated feed. The contamination level of ochratoxin A in the blood of the positive herds was in the range 2–45 ng/ml with the mean concentration 5.2 ng/ml. Feed samples for mycological analysis were collected from both ochratoxin A positive herds (2 ng/ml blood) and ochratoxin A negative herds (<2 ng/ml blood). From the ochratoxin A positive herds and the ochratoxin A negative herds 22 and 21 feed samples were collected, respectively. No quantitative differences in mould content, as determined by colony forming units, were observed between the two groups. However, there were differences in the mycoflora. The incidence of storage fungi (Penicillium and Aspergillus spp.) was significantly higher (p < 0.05) in feed from ochratoxin A positive herds. Particularly, Penicillium verrucosum was found to be significantly more common (p < 0.001). Altogether 274 isolates were screened for their ability to produce ochratoxin A. Ochratoxin A producers were found only within P. verrucosum; 38% of the 63 isolates produced detectable amounts of ochratoxin A. Ochratoxin A producing isolates of P. verrucosum were found in 60% of the feed samples collected from ochratoxin A positive swine herds and in one sample (5% ) of the feed samples collected from the ochratoxin A negative herds.  相似文献   

4.
Samples of pig blood, intended for ochratoxin A analysis, were collected from pigs of 279 randomly selected herds. The samples were obtained at nine different slaughterhouses from different areas of Sweden. Pigs from 47 herds (16.8% of the total) exhibited ochratoxin A in amounts of greater than or equal to 2 ng of ochratoxin A per ml of blood. One sample each from a single pig per herd identified herds contaminated with ochratoxin A in amounts exceeding three times the detection limit of the method (3 x 2 ng of ochratoxin A per ml of blood = 6 ng of ochratoxin A per ml of blood). There was a good agreement between ochratoxin A concentrations in the blood from different pigs within the same herd (correlation coefficient = 0.80). The ochratoxin A concentration in pig blood was used as an estimate of the ochratoxin A content of the consumed feed. This method showed that feed from grain produced on-farm contained higher concentrations of ochratoxin A than commercial feed preparations. No geographical variation of ochratoxin A occurrence within Sweden was detected.  相似文献   

5.
A metabolic product was formed from ochratoxin B by rat liver microsomal fractions in the presence of NADPH. It was isolated from the incubation mixture by extraction, thin-layer chromatography, high-pressure liquid chromatography, and crystallization. On the basis of mass and nuclear magnetic resonance spectroscopy, the structure is suggested to be 4-hydroxyochratoxin B. The Km for the formation of 4-hydroxyochratoxin B was determined, and the hydroxylation of ochratoxin A was not altered by the presence of ochratoxin B. Rats were given ochratoxin A or B, or a mixture of both intraperitoneally. The ratios of the three metabolites, ochratoxin A, (4R)-4-hydroxyochratoxin A, and ochratoxin alpha, excreted in the urine did not change in the presence of ochratoxin B. Ochratoxin B was metabolized to 4-hydroxyochratoxin B and ochratoxin beta, but in a different ratio than for the ochratoxin A metabolites. When given intraperitoneally, ochratoxin beta was excreted within 24 h. In rats treated with ochratoxin A alone, the food intake was reduced by 50%, and histologically severe lesions, degeneration, and necrosis were observed in the proximal tubules. When ochratoxin A and B given in combination, the animals were clinically unaffected and histologically there was only slight damage of proximal tubules. These observations indicate that ochratoxin B considerably reduces the toxic effects of ochratoxin A.  相似文献   

6.
The effect of zinc, copper, and iron levels on production of ochratoxin A by Aspergillus ochraceus Wilhelm in a synthetic medium in a shake culture was investigated. Optimal concentrations of ZnSO4, CuSO4, and FeCl3 for ochratoxin A production were 0.055 to 2.2 mg/liter, 0.004 to 0.04 mg/liter, and 1.2 to 24 mg/liter, respectively. Zinc and copper levels greater than optimum reduced the rate of ochratoxin accumulation without altering either glutamate or sucrose utilization. Ochratoxin A production was correlated with rapid utilization of sucrose by the fungus and decreasing pH of the medium. Most of the glutamic acid was removed from the medium prior to ochratoxin production. There was no correlation between mycelial dry weight and ochratoxin A production.  相似文献   

7.
A metabolic product was formed from ochratoxin B by rat liver microsomal fractions in the presence of NADPH. It was isolated from the incubation mixture by extraction, thin-layer chromatography, high-pressure liquid chromatography, and crystallization. On the basis of mass and nuclear magnetic resonance spectroscopy, the structure is suggested to be 4-hydroxyochratoxin B. The Km for the formation of 4-hydroxyochratoxin B was determined, and the hydroxylation of ochratoxin A was not altered by the presence of ochratoxin B. Rats were given ochratoxin A or B, or a mixture of both intraperitoneally. The ratios of the three metabolites, ochratoxin A, (4R)-4-hydroxyochratoxin A, and ochratoxin alpha, excreted in the urine did not change in the presence of ochratoxin B. Ochratoxin B was metabolized to 4-hydroxyochratoxin B and ochratoxin beta, but in a different ratio than for the ochratoxin A metabolites. When given intraperitoneally, ochratoxin beta was excreted within 24 h. In rats treated with ochratoxin A alone, the food intake was reduced by 50%, and histologically severe lesions, degeneration, and necrosis were observed in the proximal tubules. When ochratoxin A and B given in combination, the animals were clinically unaffected and histologically there was only slight damage of proximal tubules. These observations indicate that ochratoxin B considerably reduces the toxic effects of ochratoxin A.  相似文献   

8.
9.
A method is described for the isolation and purification of ochratoxin A, ochratoxin B, ochratoxin ß mellein, 4-hydroxymellein and penicillic acid produced byAspergillus ochraceus in a synthetic liquid medium. Ochratoxin α, which was not found in the culture medium, was obtained by acid hydrolysis of ochratoxin A. A high pressure liquid Chromatograph equipped with Lichrosorb 100 and Lichrosorb RP-18 columns and UV and/or Refractive Index detectors was used.  相似文献   

10.
The effect of rumen microbes on six mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol ) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol . The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin alpha and phenylalanine; zearalenone was reduced to alpha-zearalenol and to a lesser degree to beta-zearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin alpha in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.  相似文献   

11.
The effect of rumen microbes on six mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol ) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol . The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin alpha and phenylalanine; zearalenone was reduced to alpha-zearalenol and to a lesser degree to beta-zearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin alpha in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.  相似文献   

12.
For some foodstuffs, determination of the mycotoxin ochratoxin A (OTA) requires time consuming clean up by means of solid phase extraction (SPE). Therefore a system for automated SPE was tested for cleaning up roasted coffee as a possible way of shortening preparation time. Validation of the method in accordance to the so called “Concept '98” led to a LOD of 0.2 μg/kg and a recovery rate of 92%. By using the described procedure with samples of roasted coffee the OTA contents varied between the LOD and 3.4 μg/kg. This method was also used to determine ochratoxin A in liquorice roots, ginger and valerian.
Presented at the 26th Mykotoxin Workshop in Herrsching, Germany, May 17–19, 2004  相似文献   

13.
The effects of temperature and length of incubation on ochratoxin A production in various substrates were studied. The optimal temperature for toxin production by Aspergillus ochraceus NRRL-3174 was found to be around 28 C. Very low levels of ochratoxin A are produced in corn, rice, and wheat bran at 4 C. The optimal time for ochratoxin A production depends on the substrate, ranging from 7 to 14 days at 28 C. Ochratoxin B and dihydroisocoumaric acid, i.e., one of the hydrolysis products of ochratoxin A, were produced in rice but at levels considerably lower than ochratoxin A. No ochratoxin C was produced in rice at 28 C. When added to rice cereal or oatmeal, the toxin was found to be very stable over prolonged storage and even to autoclaving for 3 hr.  相似文献   

14.
The heat stability of ochratoxin A in green coffee beans inoculated with Aspergillus ochraceus was studied. Heat treatment (roasting) at 200 °C for 10 or 20 min reduced the levels of ochratoxin A by only 0–12% in the dried whole beans. Almost all of the ochratoxin A was infused into the coffee decoction when the roasted samples were ground and extracted with boiling water. Therefore, the reduction of ochratoxin A concentration of contaminated coffee beans by roasting under these conditions is ineffective.  相似文献   

15.
The conversion of ochratoxin C to ochratoxin A was studied in rats after oral and intravenous administration. The concentration of ochratoxin A in the blood as a function of time was the same after oral administration of equivalent amounts of either ochratoxin C or ochratoxin A. The maximum ochratoxin A concentrations were measured 60 min after administration. Given intravenously, ochratoxin C was also converted to ochratoxin A. Maximum concentrations were reached after 90 min. It is concluded that ochratoxin C is readily converted to ochratoxin A after both oral and intravenous administration. There is reason to believe that a comparable toxicity of the two toxins is based upon this conversion and that only interference with the biotransformation mechanisms may cause a difference in their toxicity.  相似文献   

16.
Light has a profound influence on ochratoxin biosynthesis by Penicillia. When incubated under constant daylight of a certain intensity, ochratoxin A biosynthesis is decreased by about 20–30% compared to incubation under constant darkness. Under day/night oscillation, the ochratoxin A polyketide synthase gene, a key gene of the ochratoxin A biosynthesis pathway, is rhythmically expressed, and moreover, the amount of ochratoxin also oscillates between the amounts produced either during constant darkness or during constant light. This indicates a partial degradation of ochratoxin A (20–30%) under light conditions until a certain lower limit is reached. This behavior is dependent on the light intensity. At 1,600 Lux, only weak effects could be observed; however, at 2,800 Lux, the effects became significant. After growth under constant light conditions, Penicillium produced ochratoxin B at amounts which are 5 times higher than after growth in constant dark or in alternating light/dark conditions. Growth experiments in the dark on medium with increasing amounts of ochratoxin A revealed that externally applied ochratoxin is moderately toxic. However, if the same growth experiments are carried out under light conditions, the growth inhibiting activity of ochratoxin A is greatly increased, indicating that light amplifies the toxic activity of ochratoxin. Because of the oscillation of the concentration of ochratoxin A during night and day incubation, Penicillium seems to have developed an adaptive mechanism to reduce the amount of ochratoxin A during daylight below a toxic level.  相似文献   

17.
Occurrence of ochratoxin A in herbal drugs of Indian origin — a report   总被引:1,自引:0,他引:1  
This paper contains a report of occurrence of ochratoxin A in some common herbal medicines collected from different store-houses and shop-keepers of Bihar, India. Of 129 samples of 9 plants, 55 were found to be contaminated with various levels of ochratoxin A. The level of ochratoxin A was found maximal in barks ofHolarrhena antidysenterica (1.14 – 2.34 μg/g) whereas it was minimal in rhizomes ofTacca aspera (0.3 – 0.74 μg/g).Aspergillus ochraceus, A sulphureus and Penicillium viridicatum isolates obtained from drug samples were also examined for their toxigenic potentials. 19 isolates ofA ochraceus, 13 ofA sulphureus and 37 isolates ofP viridicatum were found to be toxigenic out of 67, 33, and 107 isolates, respectively. The ochratoxin A produced by Aochraceus was in the range of 0.09 to 2.44 μg/mL, byA sulphureus 0.1 to 1.76 μg/mL, and byP viridicatum 0.14 to 2.78 μg/mL of the culture filtrate.  相似文献   

18.
The conversion of ochratoxin C to ochratoxin A was studied in rats after oral and intravenous administration. The concentration of ochratoxin A in the blood as a function of time was the same after oral administration of equivalent amounts of either ochratoxin C or ochratoxin A. The maximum ochratoxin A concentrations were measured 60 min after administration. Given intravenously, ochratoxin C was also converted to ochratoxin A. Maximum concentrations were reached after 90 min. It is concluded that ochratoxin C is readily converted to ochratoxin A after both oral and intravenous administration. There is reason to believe that a comparable toxicity of the two toxins is based upon this conversion and that only interference with the biotransformation mechanisms may cause a difference in their toxicity.  相似文献   

19.
Twenty-six samples of commercial ice-wine made from late-harvested grapes were assayed for the mycotoxins ochratoxin A and tenuazonic acid. Canadian wines originated in British Columbia (18) and Ontario (8). For comparison two German wines from Hesse were also studied. Four additional samples of research ice-wine originating in were also studied. In all wine samples, assays using immuno-affinity chromatography and fluorescence liquid chromatography indicated ochratoxin A below 0.15 μg/L, the limit of determination of the method. Tenuazonic acid was determined by solidphase micro-extraction and liquid chromatography and was below the limit of determination (70 μg/L) in all samples. The European Union food tolerance limit for ochratoxin A in wine is 2 μg/L. A tolerance for tenuazonic acid has not yet been established.  相似文献   

20.
Influence of storage time and moisture content on the development of ochratoxin A and citrinin in legumes kernel of ecological and conventional provenance Mould growth can cause the occurrence of mycotoxins in grain and legumes. Less information is known for legumes of ecological provenance. For this reason a storage trial was carried out with peas and horse beans, to examine the production of ochratoxin A (OTA) and citrinin (CT) in legumes kernel from ecological provenance. For that purpose kernels from legumes were remoistened to different moisture contents (MC, 14%/19%) and stored 24 weeks in a research granary (tower silo). This experiment should simulate the storage situation in farm scale from winter to summer. Every four weeks, the CO2-content was determined and samples taken for the analysis of moisture, OTA and CT. At week 24 and a MC of <18% 1.9 μg OTA/kg of beans and 0.7 μg OTA/kg of peas (conventionally produced) were found.
Presented at the 28th Mykotoxin-Workshop, Bydgoszcz, Poland, May 29–31, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号