首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes become activated in response to brain injury, as characterized by increased expression of glial fibrillary acidic protein (GFAP) and increased rates of cell migration and proliferation. Damage to brain cells causes the release of cytoplasmic nucleotides, such as ATP and uridine 5'-triphosphate (UTP), ligands for P2 nucleotide receptors. Results in this study with primary rat astrocytes indicate that activation of a G protein-coupled P2Y(2) receptor for ATP and UTP increases GFAP expression and both chemotactic and chemokinetic cell migration. UTP-induced astrocyte migration was inhibited by silencing of P2Y(2) nucleotide receptor (P2Y(2)R) expression with siRNA of P2Y(2)R (P2Y(2)R siRNA). UTP also increased the expression in astrocytes of alpha(V)beta(3/5) integrins that are known to interact directly with the P2Y(2)R to modulate its function. Anti-alpha(V) integrin antibodies prevented UTP-stimulated astrocyte migration, suggesting that P2Y(2)R/alpha(V) interactions mediate the activation of astrocytes by UTP. P2Y(2)R-mediated astrocyte migration required the activation of the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, responses that also were inhibited by anti-alpha(V) integrin antibody. These results suggest that P2Y(2)Rs and their associated signaling pathways may be important factors regulating astrogliosis in brain disorders.  相似文献   

2.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

3.
We have examined the expression of mRNA for several P2Y nucleotide receptors by northern blot analysis in purified type 1 cerebellar astrocyte cultures. These results suggest that different P2Y subtypes could be responsible for ATP metabotropic calcium responses in single type 1 astrocytes. To identify these subtypes we have studied the pharmacological profile of ATP calcium responses using fura-2 microfluorimetry. All tested astrocytes responded to ATP and UTP stimulations evoking similar calcium transients. Most astrocytes also responded to 2-methylthioATP and ADP challenges. The agonist potency order was 2-methylthioATP > ADP > ATP = UTP. Cross-desensitization experiments carried out with ATP, UTP, and 2-methylthioATP showed that 2-methylthioATP and UTP interact with different receptors, P2Y(1) and P2Y(2) or P2Y(4). In a subpopulation of type 1 astrocytes, ATP prestimulation did not block UTP responses, and UDP elicited clear intracellular Ca(2+) concentration responses at very low concentrations. 2-MethylthioATP and UTP calcium responses exhibited different sensitivity to pertussis toxin and different inhibition patterns in response to P2 antagonists. The P2Y(1)-specific antagonist N:(6)-methyl-2'-deoxyadenosine 3', 5'-bisphosphate (MRS 2179) specifically blocked the 2-methylthio-ATP responses. We can conclude that all single astrocytes coexpressed at least two types of P2Y metabotropic receptors: P2Y(1) and either P2Y(2) or P2Y(4) receptors. Moreover, 30-40% of astrocytes also coexpressed specific pyrimidine receptors of the P2Y(6) subtype, highly selective for UDP coupled to pertussis-toxin insensitive G protein.  相似文献   

4.
Extracellular adenosine 5′-triphosphate (ATP) activates specific G protein-coupled purinoceptors (P2Y), and ATP-P2Y signaling pathways induces intracellular Ca2+ mobilization resulting in changes in the gene expression of a variety of proteins in astrocytes. This study investigated whether the exposure of cultured astrocytes to sublethal ischemia produced resistance to subsequent lethal ischemic stress, and if so, whether the extracellular ATP-P2Y signaling pathways were responsible for the tolerance. Ischemia-like insults, sublethal oxygen-glucose deprivation (sOGD), produced tolerance to subsequent lethal OGD stress in cultured astrocytes. Early during reperfusion after sOGD, the amount of extracellular ATP and the expression of both P2Y1 and P2Y2 receptors were increased, leading to enhanced activation of the extracellular ATP-P2Y signaling pathways. The occurrence of intracellular spontaneous Ca2+ oscillations was also increased. In addition, sOGD treatment enhanced the expression of the phosphorylated form of extracellular signal-regulated protein kinases 1 and 2 (p-ERK 1/2), and treatment with an inhibitor of ERK significantly attenuated the sOGD-induced ischemic tolerance of astrocytes.  相似文献   

5.
Adenosine triphosphate (ATP) is coreleased with catecholamines from adrenal medullary chromaffin cells in response to sympathetic nervous system stimulation and may regulate these cells in an autocrine or paracrine manner. Increases in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation were observed in response to ATP stimulation of bovine chromaffin cells. The signaling pathway involved in ATP-mediated ERK1/2 phosphorylation was investigated via Western blot analysis. ATP and uridine 5′-triphosphate (UTP) increased ERK1/2 phosphorylation potently, peaking between 5 and 15 min. The mitogen-activated protein kinase (MAPK/ERK)-activating kinase (MEK) inhibitor PD98059 blocked this response. UTP, which is selective for G-protein-coupled P2Y receptors, was the most potent agonist among several nucleotides tested. Adenosine 5′-O-(3-thio) triphosphate (ATPγS) and ATP were also potent agonists, characteristic of the P2Y2 or P2Y4 receptor subtypes, whereas agonists selective for P2X receptors or other P2Y receptor subtypes were weakly effective. The receptor involved was further characterized by the nonspecific P2 antagonists suramin and reactive blue 2, which each partially inhibited ATP-mediated ERK1/2 phosphorylation. Inhibitors of protein kinase C (PKC), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphoinositide-3 kinase (PI3K) had no effect on ATP-mediated ERK1/2 phosphorylation. The Src inhibitor PP2, epidermal growth factor receptor (EGFR) inhibitor AG1478, and metalloproteinase inhibitor GM6001 decreased ATP-mediated ERK1/2 phosphorylation. These results suggest nucleotide-mediated ERK1/2 phosphorylation is mediated by a P2Y2 or P2Y4 receptor, which stimulates metalloproteinase-dependent transactivation of the EGFR.  相似文献   

6.
ATP is an extracellular signaling molecule that activates specific G protein-coupled P2Y receptors in most cell types to mediate diverse biological effects. ATP has been shown to activate the phospholipase C (PLC)/diacylglycerol/protein kinase C (PKC) pathway in various systems. However, little is known about the signaling events in human endometrial stromal cells (hESCs). The objective of this study was to examine the presence of the P2Y2 receptor and the effects of exogenous ATP on the intracellular mitogen-activated protein kinases (MAPKs) signaling pathway, immediate early genes expression, and cell viability in hESCs. Western blot analysis, gene array analysis, and MTT assay for cell viability were performed. The current study demonstrated the existence of the P2Y2 purinergic receptor in hESCs. UTP and ATP activated MAPK in a dose- and time-dependent manner. Suramin (a P2-purinoceptor antagonist), neomycin (a PLC inhibitor), staurosporin (a PKC inhibitor), and PD98059 (a MEK inhibitor) significantly attenuated the ATP-induced activation of MAPK. ATP activated ERK1/2 and induced translocation of activated ERK1/2 to the nucleus. The gene array for 23 genes associated with members of the mitogenic pathway cascade and immediate early genes revealed that the expression of early growth response 1 was increased. In addition, MTT assay revealed an inhibition effect of ATP on cell viability. ATP activated MAPKs through the P2Y2 purinoceptor/PLC/PKC/ERK signaling pathway and induced translocation of ERK1/2 into the nucleus. Further, ATP induced the expression of early growth response 1 and inhibited cell viability in hESCs.  相似文献   

7.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   

8.
Neuroinflammation is associated with a variety of CNS pathologies. Levels of tumor necrosis factor-alpha (TNF-alpha), a major proinflammatory cytokine, as well as extracellular ATP, are increased following various CNS insults. Here we report on the relationship between ATP/P2 purinergic receptor activation and lipopolysaccharide (LPS)-induced TNF-alpha release from primary cultures of rat cortical astrocytes. Using ELISA, we confirmed that treatment with LPS stimulated the release of TNF-alpha in a concentration and time dependent manner. ATP treatment alone had no effect on TNF-alpha release. LPS-induced TNF-alpha release was attenuated by 1 mm ATP, a concentration known to activate P2X7 receptors. Consistent with this, 3'-O-(4-Benzoyl)benzoyl-ATP (BzATP), a P2X7 receptor agonist, also attenuated LPS-induced TNF-alpha release. This reduction in TNF-alpha release was not due to loss of cell viability. Adenosine and 2-chloroadenosine were ineffective, suggesting that attenuation of LPS-induced TNF-alpha release by ATP was not due to ATP breakdown and subsequent activation of adenosine/P1 receptors. Interestingly, treatment of astrocyte cultures with 10 microm or 100 microm ATP potentiated TNF-alpha release induced by a submaximal concentration of LPS. UTP and 2methylthioADP (2-MeSADP), P2Y receptor agonists, also enhanced this LPS-induced TNF-alpha release. Our observations demonstrate opposing effects of ATP/P2 receptor activation on TNF-alpha release, i.e. P2X receptor activation attenuates, whereas P2Y receptor activation potentiates TNF-alpha release in LPS-stimulated astrocytes. These observations suggest a mechanism whereby astrocytes can sense the severity of damage in the CNS via ATP release from damaged cells and can modulate the TNF-alpha mediated inflammatory response depending on the extracellular ATP concentration and corresponding type of astrocyte ATP/P2 receptor activated.  相似文献   

9.
10.
Gliosis is a hypertrophic and hyperplastic response to many types of central nervous system injury, including trauma, stroke, seizure, as well as neurodegenerative and demyelinating disorders. Reactive astrocytes, a major component of the glial scar, express molecules that can both inhibit and promote axonal regeneration. ATP, which is released upon traumatic injury, hypoxia, and cell death, contributes to the gliotic response by binding to specific cell surface astrocytic P2 nucleotide receptors and evoking characteristic features of gliosis such as increased expression of glial fibrillary acidic protein (GFAP), generation and elongation of astrocytic processes, and cellular proliferation. Here, we review recent studies that demonstrate that (1) metabotropic, P2Y, and ionotropic, P2X, receptors expressed in astrocytes are coupled to protein kinase signaling pathways that regulate cellular proliferation, differentiation, and survival such as ERK and protein kinase B/Akt and (2) these P2 receptor/protein kinase cascades are activated after trauma induced by mechanical strain. We suggest that P2 receptor/protein kinase signaling pathways might provide novel therapeutic targets to regulate the formation of reactive astrocytes and the production of molecules that affect axonal regeneration and neurodegeneration.  相似文献   

11.
12.
Arginine vasopressin (AVP) is a nonapeptide long known as an endocrine and paracrine regulator of important systemic functions, namely, vasoconstriction, gluconeogenesis, corticosteroidogenesis, and excretion of water and urea. Here we report, for the first time, that AVP specifically inhibits expression of the cyclin D1 gene, leading to cell cycle blockage and halting cell proliferation. In G0/G1-arrested mouse Y1 adrenocortical tumor cells, maintained in serum-free medium (SFM), AVP mimics FGF2, promoting rapid ERK1/2 activation (5 min) followed by c-Fos protein induction (2 h). PKC inhibitor Go6983 and PI3K inhibitors wortmannin and LY294002 all inhibit ERK1/2 activation by AVP, but not by FGF2. Thus, AVP and FGF2 concur to activate ERK1/2 by different regulatory pathways. However, AVP is not a mitogenic factor for Y1 cells. On the contrary, AVP strongly antagonizes FGF2 late induction (2-5 h) of the cyclin D1 gene, down-regulating both cyclin D1 mRNA and protein. AVP inhibition of cyclin D1 expression is sufficient to block G1 phase progression and cell entry into the S phase, monitored by BrdU nuclear labeling. In addition, AVP completely inhibits proliferation of Y1 cells in 10% fetal calf serum (10% FCS) medium. On the other hand, ectopic expression of the cyclin D1 protein renders Y1 cells resistant to AVP for both entry into the S phase in SFM and continuous proliferation in 10% FCS medium. In conclusion, inhibition of cyclin D1 expression by AVP is an efficient mechanism of cell cycle blockage and consequent proliferation inhibition in Y1 adrenocortical cells.  相似文献   

13.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

14.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

15.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

16.
Xiao Z  Yang M  Lv Q  Wang W  Deng M  Liu X  He Q  Chen X  Chen M  Fang L  Xie X  Hu J 《Journal of cellular biochemistry》2011,112(9):2257-2265
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.  相似文献   

17.
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Müller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.  相似文献   

18.
Neary JT  Kang Y  Shi YF 《Neurochemical research》2004,29(11):2037-2042
In the CNS, extracellular ATP can function as an excitatory neurotransmitter as well as a trophic factor. These short-term and long-term actions are mediated by nucleotide receptors. Extracellular ATP can also act as a co-mitogen in conjunction with polypeptide growth factors such as basic fibroblast growth factor (FGF2). Cellular proliferation, differentiation and survival are regulated by signaling cascades composed of protein kinases, including extracellular signal regulated protein kinase (ERK) and protein kinase B (also called Akt). Here we summarize recent studies on nucleotide receptor signaling to ERK and Akt in astrocytes and the role of protein kinase cascades in mediating the trophic actions of extracellular ATP, alone or together with FGF2. Because extracellular ATP and FGF2 contribute to the hyperplastic and hypertrophic response of astrocytes to CNS injuries, an understanding of their protein kinase signaling mechanisms may lead to novel therapeutic approaches for neurological conditions that involve gliosis and the generation of reactive astrocytes, such as trauma, stroke, seizure and neurodegenerative and demyelinating disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   

19.
Extracellular nucleotides interact with purinergic receptors, which regulate ion transport in a variety of epithelia. With the use of two different human epithelial carcinoma cell lines (HCT8 and Caco-2), we have shown by RT-PCR that the cells express mRNA for P2X1, P2X3, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12 receptors. Protein expression for P2Y1 and P2Y2 receptors was also demonstrated immunohistochemically, and P2X receptor subtype protein was present in the following decreasing order: P2X4 > P2X7 > P2X1 > P2X3 > P2X6 > P2X5 > P2X2. The functional presence of P2X7, P2Y1, P2Y2, and P2Y4 receptors was shown based on the effect of extracellular nucleotides on apoptosis or cell proliferation, and measurement of nucleotide-dependent calcium fluxes using a fluorometric imaging plate reader in the presence of different selective agonists and antagonists. ATP, at high concentrations, induced apoptosis through ligation of P2X7 and P2Y1 receptors; conversely, ATP, at lower concentrations, and UTP stimulated proliferation, probably acting via P2Y2 receptors. We therefore propose that stimulation or dysfunction of purinergic receptors may contribute at least partially to modulation of epithelial carcinoma cell proliferation and apoptosis.  相似文献   

20.
We investigated the mechanism of synaptic suppression by P2Y receptors in mixed hippocampal cultures wherein networked neurons exhibit synchronized Ca2+ oscillations (SCO) due to spontaneous glutamatergic synaptic transmission. Pharmacological studies suggested that SCO suppression was mediated by P2Y2/P2Y4 receptors. Immunostaining studies and characterization of ATP/UTP-stimulated Ca2+ responses in solitary neurons and astrocytes revealed that the SCO attenuation was effectuated by astrocytes. We demonstrate that nitric oxide released from activated astrocytes causes synaptic suppression by inhibiting neurotransmitter release. Physiological concentrations of ATP and UTP evoked NO production in astrocytes. SCO suppression was considerably diminished by removal of extracellular NO by membrane-impermeable scavenger c-PTIO or by pretreatment of cells with nitric oxide synthase inhibitor L-NAME. The nitric oxide donor DETA/NO effectively suppressed the SCO. ATP/UTP inhibited KCl-induced exocytosis at presynaptic terminals in an NO-dependent manner. In the absence of exogenously added ATP/UTP, both the NO scavenger and NOS inhibitor enhanced the frequency of SCO, implying that astrocytes release NO during spontaneous synaptic activity and exert a suppressive effect. We report for the first time that under physiological conditions astrocytes use NO as a messenger molecule to modulate the synaptic strength in the networked neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号