首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The side chain of Gln143, a conserved residue in manganese superoxide dismutase (MnSOD), forms a hydrogen bond with the manganese-bound solvent and is critical in maintaining catalytic activity. The side chains of Tyr34 and Trp123 form hydrogen bonds with the carboxamide of Gln143. We have replaced Tyr34 and Trp123 with Phe in single and double mutants of human MnSOD and measured their catalytic activity by stopped-flow spectrophotometry and pulse radiolysis. The replacements of these side chains inhibited steps in the catalysis as much as 50-fold; in addition, they altered the gating between catalysis and formation of a peroxide complex to yield a more product-inhibited enzyme. The replacement of both Tyr34 and Trp123 in a double mutant showed that these two residues interact cooperatively in maintaining catalytic activity. The crystal structure of Y34F/W123F human MnSOD at 1.95 A resolution suggests that this effect is not related to a conformational change in the side chain of Gln143, which does not change orientation in Y34F/W123F, but rather to more subtle electronic effects due to the loss of hydrogen bonding to the carboxamide side chain of Gln143. Wild-type MnSOD containing Trp123 and Tyr34 has approximately the same thermal stability compared with mutants containing Phe at these positions, suggesting the hydrogen bonds formed by these residues have functional rather than structural roles.  相似文献   

2.
Histidine at the active site of superoxide dismutase   总被引:5,自引:0,他引:5  
  相似文献   

3.
Superoxide dismutase protects organisms from potentially damaging oxygen radicals by catalyzing the disproportionation of superoxide to oxygen and hydrogen peroxide. We report the use of cryogenic temperatures to kinetically capture the sixth ligand bound to the active site of manganese superoxide dismutase (MnSOD). Synchrotron X-ray diffraction data was collected from Escherichia coli MnSOD crystals grown at pH 8.5 and cryocooled to 100 K. Structural refinement to 1.55 A resolution and close inspection of the active site revealed electron density for a sixth ligand that was interpreted to be a hydroxide ligand. The six-coordinate, distorted-octahedral geometry assumed during inhibition by hydroxide is compared to the room temperature, five-coordinate, trigonal bipyramidal active site determined with crystals grown from practically identical conditions. The gateway residues Tyr34, His30 and a tightly bound water molecule are implicated in closing-off the active site and blocking the escape route of the sixth ligand.  相似文献   

4.
5.
The side chains of His30 and Tyr166 from adjacent subunits in the homotetramer human manganese superoxide dismutase (Mn-SOD) form a hydrogen bond across the dimer interface and participate in a hydrogen-bonded network that extends to the active site. Compared with wild-type Mn-SOD, the site-specific mutants H30N, Y166F, and the corresponding double mutant showed 10-fold decreases in steady-state constants for catalysis measured by pulse radiolysis. The observation of no additional effect upon the second mutation is an example of cooperatively interacting residues. A similar effect was observed in the thermal stability of these enzymes; the double mutant did not reduce the major unfolding transition to an extent greater than either single mutant. The crystal structures of these site-specific mutants each have unique conformational changes, but each has lost the hydrogen bond across the dimer interface, which results in a decrease in catalysis. These same mutations caused an enhancement of the dissociation of the product-inhibited complex. That is, His30 and Tyr166 in wild-type Mn-SOD act to prolong the lifetime of the inhibited complex. This would have a selective advantage in blocking a cellular overproduction of toxic H2O2.  相似文献   

6.
Human manganese superoxide dismutase (MnSOD) is a homotetramer of 22 kDa subunits, a dimer of dimers containing dimeric and tetrameric interfaces. We have investigated conformational mobility at these interfaces by measuring amide hydrogen/deuterium (H/D) exchange kinetics and 19F NMR spectra, both being excellent methods for analyzing local environments. Human MnSOD was prepared in which all nine tyrosine residues in each subunit are replaced with 3-fluorotyrosine. The 19F NMR spectrum of this enzyme showed five sharp resonances that have been assigned by site-specific mutagenesis by replacing each 3-fluorotyrosine with phenylalanine; four 19F resonances not observed are near the paramagnetic manganese and extensively broadened. The temperature dependence of the line widths and chemical shifts of the 19F resonances were used to estimate conformational mobility. 3-Fluorotyrosine 169 at the dimeric interface showed little conformational mobility and 3-fluorotyrosine 45 at the tetrameric interface showed much greater mobility by these measures. In complementary studies, H/D exchange mass spectrometry was used to measure backbone dynamics in human MnSOD. Using this approach, amide hydrogen exchange kinetics were measured for regions comprising 78% of the MnSOD backbone. Peptides containing Tyr45 at the tetrameric interface displayed rapid exchange of hydrogen with deuterium while peptides containing Tyr169 in the dimeric interface only displayed moderate exchange. Taken together, these studies show that residues at the dimeric interface, such as Tyr169, have significantly less conformational freedom or mobility than do residues at the tetrameric interface, such as Tyr45. This is discussed in terms of the role in catalysis of residues at the dimeric interface.  相似文献   

7.
8.
Among manganese superoxide dismutases, residues His30 and Tyr174 are highly conserved, forming part of the substrate access funnel in the active site. These two residues are structurally linked by a strong hydrogen bond between His30 NE2 from one subunit and Tyr174 OH from the other subunit of the dimer, forming an important element that bridges the dimer interface. Mutation of either His30 or Tyr174 in Escherichia coli MnSOD reduces the superoxide dismutase activity to 30--40% of that of the wt enzyme, which is surprising, since Y174 is quite remote from the active site metal center. The 2.2 A resolution X-ray structure of H30A-MnSOD shows that removing the Tyr174-->His30 hydrogen bond from the acceptor side results in a significant displacement of the main-chain segment containing the Y174 residue, with local rearrangement of the protein. The 1.35 A resolution structure of Y174F-MnSOD shows that disruption of the same hydrogen bond from the donor side has much greater consequences, with reorientation of F174 having a domino effect on the neighboring residues, resulting in a major rearrangement of the dimer interface and flipping of the His30 ring. Spectroscopic studies on H30A, H30N, and Y174F mutants show that (like the previously characterized Y34F mutant of E. coli MnSOD) all lack the high pH transition of the wt enzyme. This observation supports assignment of the pH sensitivity of MnSOD to coordination of hydroxide ion at high pH rather than to ionization of the phenolic group of Y34. Thus, mutations near the active site, as in the Y34F mutant, as well as at remote positions, as in Y174F, similarly affect the metal reactivity and alter the effective pK(a) for hydroxide ion binding. These results imply that hydrogen bonding of the H30 imidazole N--H group plays a key role in substrate binding and catalysis.  相似文献   

9.
Recent studies from this laboratory have demonstrated that human manganese superoxide dismutase (MnSOD) is a target for tyrosine nitration in several chronic inflammatory diseases including chronic organ rejection, arthritis, and tumorigenesis. Furthermore, we demonstrated that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, nitrate critical tyrosine residues, and induce dityrosine formation in MnSOD. To elucidate the differential contributions of tyrosine nitration and oxidation during enzymatic inactivation, we now compare ONOO- treatment of native recombinant human MnSOD (WT-MnSOD) and a mutant, Y34F-MnSOD, in which tyrosine 34 (the residue most susceptible to ONOO--mediated nitration) was mutated to phenylalanine. Both WT-MnSOD (IC50 = 65 microM, 15 microM MnSOD) and Y34F-MnSOD (IC50 = 55 microM, 15 microM Y34F) displayed similar dose-dependent sensitivity to ONOO--mediated inactivation. Compared to WT-MnSOD, the Y34F-MnSOD mutant demonstrated significantly less efficient tyrosine nitration and enhanced formation of dityrosine following treatment with ONOO-. Collectively, these results suggest that complete inactivation of MnSOD by ONOO- can occur independent of the active site tyrosine residue and includes not only nitration of critical tyrosine residues but also tyrosine oxidation and subsequent formation of dityrosine.  相似文献   

10.
The primary structure of human liver manganese superoxide dismutase   总被引:8,自引:0,他引:8  
The complete amino acid sequence of manganese superoxide dismutase from human liver was determined. The sequence was deduced following characterization of the peptides obtained from tryptic, chymotryptic, and Staphylococcus aureus digests of the apoprotein. Chemical cleavage with dimethyl sulfoxide-hydrobromic acid was also carried out. The amino acid sequence listed below is made up of 196 amino acids and the two subunit polypeptides in the native enzyme appear to be identical. No homology was observed with copper/zinc containing class of superoxide dismutase. Lys-His-Ser-Leu-Pro-Asp-Leu-Pro-Tyr-Asp-Tyr-Gly-Ala-Leu-Glu-Pro-His-Il e -Asn-Ala-Gln-Ile-Met-Gln-Leu-His-His-Ser-Lys-His-His-Ala-Ala-Tyr-Val-Asn -Asn-Leu-Asn-Val-Thr-Gln-Glu-Lys-Tyr-Gln-Glu-Ala-Leu-Ala-Lys-Gly-Asp-Val -Thr-Ala-Gln-Ile-Ala-Leu-Gln-Pro-Ala-Leu-Lys-Phe-Asn-Gly-Gly-Gly-His-Ile -Asn-His-Ser-Ile-Phe-Trp-Thr-Asn-Leu-Ser-Pro-Asn-Gly-Gly-Gly-Gln-Pro-Lys -Gly-Glu-Leu-Leu-Glu-Ala-Ile-Lys-Arg-Asp-Phe-Gly-Ser-Phe-Asp-Lys-Phe-Lys -Gln-Lys-Leu-Thr-Ala-Ala-Ser-Val-Gly-Val-Gln-Gly-Ser-Gly-Trp-Leu-Gly-Phe -Asn-Lys-Gln-Arg-Gly-His-Leu-Gln-Ile-Ala-Ala-Cys-Pro-Asn-Gln-Asp-Pro-Leu -Gln-Gly-Thr-Thr-Gly-Leu-Ile-Pro-Leu-Leu-Gly-Ile-Asp-Val-Trp-Glu-His-Ala -Tyr-Tyr-Leu-Gln-Tyr-Lys-Asn-Val-Arg-Pro-Asp-Tyr-Leu-Lys-Ala-Ile-Trp-Asn -Val-Ile-Asn-Trp-Glu-Asn-Val-Thr-Glu-Arg-Tyr-Met-Ala-Cys-Lys-Lys.  相似文献   

11.
The reduction with excess H(2)O(2) of human Mn(III) superoxide dismutase (SOD) and the active-site mutant Y34F Mn(III)SOD was measured by scanning stopped-flow spectrophotometry and revealed the presence of an intermediate in the reduction of the manganese. The visible absorption spectrum of this intermediate closely resembled that of the enzyme in the inhibited, zero-order phase of the catalyzed disproportionation of superoxide. The decay of the visible spectrum of this intermediate was 2-fold faster for the wild-type compared with the mutant Y34F Mn-SOD. This correlates with the enhanced product inhibition of Y34F during the catalysis of O-(2) dismutation. The visible spectrum of the product-inhibited complex resembles that of the azide-Mn-SOD complex, suggesting that the inhibited complex has expanded geometry about the metal to octahedral. This study shows that the inhibited complex responsible for the zero-order phase in the catalysis by Mn-SOD of superoxide dismutation can be reached through both the forward (O-(2)) and reverse (H(2)O(2)) reactions, supporting a mechanism in which the zero-order phase results from product inhibition.  相似文献   

12.
The three-dimensional X-ray structure of a recombinant human mitochondrial manganese superoxide dismutase (MnSOD) (chain length 198 residues) was determined by the method of molecular replacement using the related structure of MnSOD from Thermus thermophilus as a search model. This tetrameric human MnSOD crystallizes in space group P2(1)2(1)2 with a dimer in the asymmetric unit (Wagner, U.G., Werber, M.M., Beck, Y., Hartman, J.R., Frolow, F., & Sussman, J.L., 1989, J. Mol. Biol. 206, 787-788). Refinement of the protein structure (3,148 atoms with Mn and no solvents), with restraints maintaining noncrystallographic symmetry, converged at an R-factor of 0.207 using all data from 8.0 to 3.2 A resolution and group thermal parameters. The monomer-monomer interactions typical of bacterial Fe- and Mn-containing SODs are retained in the human enzyme, but the dimer-dimer interactions that form the tetramer are very different from those found in the structure of MnSOD from T. thermophilus. In human MnSOD one of the dimers is rotated by 84 degrees relative to its equivalent in the thermophile enzyme. As a result the monomers are arranged in an approximately tetrahedral array, the dimer-dimer packing is more intimate than observed in the bacterial MnSOD from T. thermophilus, and the dimers interdigitate. The metal-ligand interactions, determined by refinement and verified by computation of omit maps, are identical to those observed in T. thermophilus MnSOD.  相似文献   

13.
Tryptophan 161 is a highly conserved residue that forms a hydrophobic side of the active site cavity of manganese superoxide dismutase (MnSOD), with its indole ring adjacent to and about 5 A from the manganese. We have made a mutant containing the conservative replacement Trp 161 --> Phe in human MnSOD (W161F MnSOD), determined its crystal structure, and measured the catalysis of the resulting mutant using pulse radiolysis to produce O(2)(*)(-). In the structure of W161F MnSOD the phenyl side chain of Phe 161 superimposes on the indole ring of Trp 161 in the wild type. However, in the mutant, the hydroxyl side chain of Tyr 34 is 3.9 A from the manganese, closer by 1.2 A than in the wild type. The tryptophan in MnSOD is not essential for the half-cycle of catalytic activity involving reduction of the manganese; the mutant W161F MnSOD had k(cat)/K(m) at 2.5 x 10(8) M(-)(1) s(-)(1), reduced only 3-fold compared with wild type. However, this mutant exhibited a strong product inhibition with a zero-order region of superoxide decay slower by 10-fold compared with wild type. The visible absorption spectrum of W161F MnSOD in the inhibited state was very similar to that observed for the inhibited wild-type enzyme. The appearance of the inhibited form required reaction of 2 molar equiv of O(2)(*)(-) with W161F Mn(III)SOD, one to form the reduced state of the metal and the second to form the inhibited complex, confirming that the inhibited complex requires reaction of O(2)(*)(-) with the reduced form of the enzyme. This work suggests that a significant role of Trp 161 in the active site is to promote the dissociation of product peroxide, perhaps in part through its effect on the orientation of Tyr 34.  相似文献   

14.
The genetically engineered human manganese superoxide dismutase crystallizes in space group P2(1)2(1)2 with a = 75.51 A, b = 79.00 A, c = 67.95 A. At room temperature the crystals are not stable against radiation, so we cooled them to 90 K and collected a data set to 3 A resolution at this temperature.  相似文献   

15.
Lévêque VJ  Vance CK  Nick HS  Silverman DN 《Biochemistry》2001,40(35):10586-10591
The redox potential of human manganese superoxide dismutase (MnSOD) has been difficult to determine because of the problem of finding suitable electron mediators. We have found that ferricyanide and pentacyanoaminoferrate can be used as electron mediators, although equilibration is very slow with a half-time near 6 h. Values of the midpoint potential were determined both by allowing enzyme and mediators to equilibrate up to 38 h and by reductive titration adding dithionite to enzyme and mediator. An overall value of the midpoint potential was found to be 393 +/- 29 mV. To elucidate the role of His30 and Tyr34 in the active site of human MnSOD, we have also measured the redox properties of the site-specific mutants His30Asn (H30N) and Tyr34Phe (Y34F) and compared them with the wild-type enzyme. Crystal structures have shown that each mutation interrupts a hydrogen bond network in the active site, and each causes a 10-fold decrease in the maximal velocity of catalysis of superoxide dismutation as compared with wild type. The present study shows that H30N and Y34F human MnSOD have very little effect, within experimental uncertainty, on the redox potential of the active-site metal. The redox potentials determined electrochemically were 365 +/- 28 mV for H30N and 435 +/- 30 mV for Y34F MnSOD. These results suggest that the role of His30 and Tyr34 is more in support of catalysis, probably proton transport, and not in the tuning of the redox potential.  相似文献   

16.
Manganese superoxide dismutase (MnSOD) cycles between the Mn(II) and Mn(III) states during the catalyzed disproportionation of O(2)(*-), a catalysis that is limited at micromolar levels of superoxide by a peroxide-inhibited complex with the metal. We have investigated the role in catalysis and inhibition of the conserved residue Trp161 which forms a hydrophobic side of the active site cavity of MnSOD. Crystal structures of mutants of human MnSOD in which Trp161 was replaced with Ala or Phe showed significant conformational changes on adjacent residues near the active site, particularly Gln143 and Tyr34 which in wild-type MnSOD participate in a hydrogen bond network believed to support proton transfer during catalysis. Using pulse radiolysis and observing the UV absorbance of superoxide, we have determined rate constants for the catalytic dismutation of superoxide. In addition, the rates of formation and dissociation of the product-inhibited complex of these mutants were determined by direct observation of the characteristic visible absorption of the oxidized and inhibited states. Catalysis by W161A and W161F MnSOD was associated with a decrease of at least 100-fold in the catalytic rate of reduction of superoxide, which then promotes a competing pathway leading to product inhibition. The structural changes caused by the mutations at position 161 led to small changes, at most a 6-fold decrease, in the rate constant for formation of the inhibited complex. Solvent hydrogen isotope effects support a mechanism in which formation of this complex, presumably the peroxide dianion bound to the manganese, involves no rate-contributing proton transfer; however, the dissociation of the complex requires proton transfer to generate HO(2)(-) or H2O2.  相似文献   

17.
The hydrogen bonding of bovine ribonuclease A derived from the high resolution X-ray structure has been studied in detail. Correlations have been examined for main-chain-main-chain hydrogen bond angles, torsion angles and distances, respectively. Differences are found consistently for correlations associated with alpha-helix and beta-sheet, respectively. Ten of the 124 side-chains have four or more hydrogen bond contacts; two, including Glu-101, have five or more. Three potential C = O---H, three N---X and three potential side-chain H-bonds fail to form. A search for highly inaccessible buried residues resulted in nine outstanding examples, all of which are conserved across 38 known mammalian ribonuclease A sequences, indicating the importance of these residues for structural stability. Of the two histidines in the active site, His-12 has five hydrogen bonds and His-119 three. The conformational space accessible to these two catalytically important residues studied by means of simple non-bonded contact energy calculations confirms the existence of two alternative, interchangeable locations for His-119, while His-12 is locked in a local energy minimum.  相似文献   

18.
Oxidative stress and mitochondrial damage occur in sepsis. Manganese superoxide dismutase (MnSOD) provides the main defence against oxidative stress within mitochondria. Ala9Val is a single nucleotide polymorphism (SNP) in the MnSOD gene, predicted to affect intra-mitochondrial transport of the enzyme. We found a significant difference in the genotype frequency between healthy subjects (n = 100) and patients with sepsis (n = 40, p = 0.009). For assessment of functionality ten healthy subjects of each homozygous genotype (A/A or V/V) were studied. Peripheral blood mononuclear cells were separated and incubated for 18 h with lipopolysaccharide (LPS), followed by analysis of mitochondrial and cytosolic fractions. There was no difference between genotypes in MnSOD activity and cytochrome c concentration, and minor differences in total antioxidant capacity (TAC) and mitochondrial membrane potential, which did not affect response to LPS. Despite predictions from structural enzyme studies that mitochondrial trafficking would be affected by the Ala9Val polymorphism of the MnSOD gene had little functional effect.  相似文献   

19.
Oxidative stress and mitochondrial damage occur in sepsis. Manganese superoxide dismutase (MnSOD) provides the main defence against oxidative stress within mitochondria. Ala9Val is a single nucleotide polymorphism (SNP) in the MnSOD gene, predicted to affect intra-mitochondrial transport of the enzyme. We found a significant difference in the genotype frequency between healthy subjects (n = 100) and patients with sepsis (n = 40, p = 0.009). For assessment of functionality ten healthy subjects of each homozygous genotype (A/A or V/V) were studied. Peripheral blood mononuclear cells were separated and incubated for 18 h with lipopolysaccharide (LPS), followed by analysis of mitochondrial and cytosolic fractions. There was no difference between genotypes in MnSOD activity and cytochrome c concentration, and minor differences in total antioxidant capacity (TAC) and mitochondrial membrane potential, which did not affect response to LPS. Despite predictions from structural enzyme studies that mitochondrial trafficking would be affected by the Ala9Val polymorphism of the MnSOD gene had little functional effect.  相似文献   

20.
Ferrochelatase catalyzes the terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin to form protoheme IX. The crystal structures of human ferrochelatase both with and without the protoporphyrin substrate bound have been determined previously. The substrate-free enzyme has an open active site pocket, while in the substrate-bound enzyme, the active site pocket is closed around the porphyrin macrocycle and a number of active site residues have reoriented side chains. To understand how and why these structural changes occur, we have substituted three amino acid residues (H263, H341, and F337) whose side chains occupy different spatial positions in the substrate-free versus substrate-bound ferrochelatases. The catalytic and structural properties of ferrochelatases containing the amino acid substitutions H263C, H341C, and F337A were examined. It was found that in the H263C and H341C variants, but not the F337A variant enzymes, the side chains of N75, M76, R164, H263, F337, H341, and E343 are oriented in a fashion similar to what is found in ferrochelatase with the bound porphyrin substrate. However, all of the variant forms possess open active site pockets which are found in the structure of porphyrin-free ferrochelatase. Thus, while the interior walls of the active site pocket are remodeled in these variants, the exterior lips remain unaltered in position. One possible explanation for this collective reorganization of active site side chains is the presence of a hydrogen bond network among H263, H341, and E343. This network is disrupted in the variants by alteration of H263C or H341C. In the substrate-bound enzyme, the formation of a hydrogen bond between H263 and a pyrrole nitrogen results in disruption of the network. The possible role of this network in catalysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号