首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
2.
3.
4.
5.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl endopeptidase-generated fragments were determined for the purpose of preparing oligonucleotide primers for cloning arpA by the PCR method. The arpA gene cloned in this way directed the synthesis of a protein having A-factor-specific binding activity when expressed in Escherichia coli under the control of the T7 promoter. The arpA gene was thus concluded to encode a 276-amino-acid protein with a calculated molecular mass of 29.1 kDa, as determined by nucleotide sequencing. The A-factor-binding activity was observed with a homodimer of ArpA. The NH2-terminal portion of ArpA contained an alpha-helix-turn-alpha-helix DNA-binding motif that showed great similarity to those of many DNA-binding proteins, which suggests that it exerts its regulatory function for the various phenotypes by directly binding to a certain key gene(s). Although a mutant strain deficient in both the ArpA protein and A-factor production overproduces streptomycin and forms aerial mycelium and spores earlier than the wild-type strain because of repressor-like behavior of ArpA, introduction of arpA into this mutant abolished simultaneously its streptomycin production and aerial mycelium formation. All of these data are consistent with the idea that ArpA acts as a repressor-type regulator for secondary metabolite formation and morphogenesis during the early growth phase and A-factor at a certain critical intracellular concentration releases the derepression, thus leading to the onset of secondary metabolism and aerial mycelium formation. The presence of ArpA-like proteins among Streptomyces spp., as revealed by PCR, together with the presence of A-factor-like compounds, suggests that a hormonal control similar to the A-factor system exists in many species of this genus.  相似文献   

6.
7.
8.
9.
10.
《Gene》1998,222(1):133-144
The A-factor receptor protein (ArpA) plays a key role in the regulation of secondary metabolism and cellular differentiation in Streptomyces griseus. ArpA binds the target DNA site forming a 22 bp palindrome in the absence of A-factor, and exogenous addition of A-factor to the ArpA–DNA complex immediately releases ArpA from the DNA. An amino acid (aa) replacement at Val-41 to Ala in an α-helix–turn–α-helix (HTH) motif at the N-terminal portion of ArpA abolished DNA-binding activity but not A-factor-binding activity, suggesting the involvement of this HTH in DNA-binding. On the other hand, an aa replacement at Trp-119 to Ala generated a mutant ArpA that was unable to bind A-factor, thus resulting in an A-factor-insensitive mutant that bound normally to its target DNA in both the presence and absence of A-factor. These data suggest that ArpA consisting of two functional domains, one for HTH-type DNA-binding at the N-terminal portion and one for A-factor-binding at the C-terminal portion, is a member of the LacI family. Consistent with this, two ArpA homologues, CprA and CprB, from Streptomyces coelicolor A3(2), each of which contains a very similar aa sequence of the HTH to that of ArpA, also recognized and bound the same DNA target. However, neither CprA nor CprB recognized A-factor, probably due to much less similarity in the C-terminal domains.  相似文献   

11.
12.
13.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein (ArpA) are required for streptomycin production and aerial mycelium formation in Streptomyces griseus. A mutant strain HO1 that produced streptomycin and formed aerial mycelium and spores was derived from an A-factor-deficient mutant, S. griseus HH1. The phenotypes of mutant HO1 were found to result from a single amino acid replacement of ArpA; the proline residue at position 115 in the wild-type ArpA was replaced by serine, yielding mutant ArpA (P115S). The mutant ArpA (P115S) was still able to form a homodimer and possessed A-factor-binding ability but lost the ability to bind DNA. The properties of P115S suggest that ArpA consists of two independently functional domains, one for A-factor binding and one for DNA binding, and that proline-115 plays an important role in DNA binding. This is in agreement with the idea that A-factor binding to the COOH-terminal domain of ArpA causes a subtle conformational change of the distal NH2-terminal DNA-binding domain, resulting in dissociation of ArpA from DNA.  相似文献   

14.
15.
In the A-factor regulatory cascade leading to the onset of streptomycin biosynthesis and aerial mycelium formation in Streptomyces griseus, the A-factor receptor protein (ArpA) serves as a DNA-binding repressor and A-factor releases the repression by binding to ArpA and dissociating it from the DNA. Mutants defective in arpA therefore produce streptomycin and aerial hyphae in the absence of A-factor. A gene that inhibits streptomycin production and aerial hyphae formation in an arpA mutant was cloned on a high-copy-number plasmid and found to encode a eukaryotic-type adenylate cyclase (CyaA). Consistent with this, an exogenous supply of cAMP at high concentration almost abolished streptomycin production and aerial hyphae formation. On the other hand, cAMP at lower concentrations stimulated or accelerated these developmental processes. The effects of cAMP were detectable only in arpA mutants, and not in the wild-type strain; an exogenous supply of cAMP or cyaA disruption in the wild-type strain caused almost no effect on these phenotypes. Thus the effects of cAMP became apparent only in the arpA-defective background. cAMP at high concentrations inhibited stringent response factor ppGpp production, which is important for the onset of antibiotic biosynthesis. cAMP also influenced the timing of tyrosine phosphorylation of more than nine proteins. These findings show that a cAMP regulatory relay for physiological and morphological development functions in a concerted and interdependent way with other signal transduction pathways. Journal of Industrial Microbiology & Biotechnology (2001) 27, 177–182. Received 21 September 1999/ Accepted in revised form 14 September 2000  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号