首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Cellulose-based stationary phases are known to be very efficient and versatile chiral sorbents for the chromatographic resolution of racemates. Except for microcrystalline cellulose triacetate (CTA I), basically all other cellulose-based phases have been prepared by coating of ca. 20% weight polymer on a wide pore silica gel used as a carrier. In this work we describe the preparation of benzoylcellulose (TBC) beads in the pure polymeric form (without inorganic carrier) from an emulsion of the organic polymer. The new material has been fully characterized and used as a chiral stationary phase for the resolution of various classes of racemic compounds such as benzylic alcohols or acetate derivatives of aliphatic alcohols and diols. The structural variety of the separated solutes as well as the irrational influence of the aromatic substituent in different classes of aryl compounds suggest that multiple interaction sites are involved in the complexation, making a prediction of the separation difficult. The benzoyl cellulose beads exhibit a very high loading capacity, which is particularly useful for preparative purposes as demonstrated for selected examples.  相似文献   

2.
Ina retrospective study validated by a standardized clinical and radiologicalexamination, the bone regeneration in 90 patients with cystic mandibulardefectswas examined. In 50 patients bony defect reconstructions with humandemineralised bone matrix (HDBM) were carried out, while in a comparable groupof 40 patients the hollow pockets were left to regenerate bone spontaneously.The bone regeneration after the implantation of human demineralised bone matrix(HDBM) was subjected to a comparative validation. Osteoinductive proteinspresent in HDBM (bone morphogenetic proteins) can diffuse into the implant seatand induce new bone formation (osteoinduction). A markedly faster and morethorough bone regeneration was demonstrated after the surgical therapy ofcysticmandibular lesions with HDBM than without. HDBM also proved to be exceptionallybiocompatible.  相似文献   

3.
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2 +-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2 + binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号