首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
T Yajima 《Histochemistry》1988,90(4):245-253
The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases. In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosomes derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. The observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts. These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

2.
Summary The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases.In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosome derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. the observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts.These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

3.
The fine structure of trophoblast giant cells and their interaction with collagen at the antimesometrial region on the 9th day of pregnancy was examined in fed and acute fasted mice. Collagen fibrils and filamentous aggregates (disintegrating collagen fibrils) were observed in the extracellular space. Three types of intracellular vacuoles containing collagen fibrils were present: vacuole type A exhibited typical cross-banded collagen immersed in finely granular electron-translucent material; and vacuoles type B and C showed electron-opaque granular material containing, respectively, faint cross-banded collagen and narrow clear stripes often with faint periodicity. In fed animals vacuoles type B were absent and the others were less evident.Only fasted animals showed extracellular acid phosphatase activity on collagen fibrils, filamentous aggregates and confined regions of the extracellular space. Intracellular acid phosphatase activity was observed in vacuoles type B and in lysosomes.The results indicate that trophoblast giant cells are capable of breaking down extracellular collagen and also of internalizing collagen for intracellular degradation. It is likely that these events are part of the process of invasion of the uterine wall. However, in fasted mice, collagen breakdown is more pronounced, and it may therefore contribute to the provision of amino acids and other nutrients for the undernourished fetus.  相似文献   

4.
Ultrastructural study of gravid and postpartum involuting human uteri revealed a number of cells containing collagen fibrils in their cytoplasm. In gravid uteri these cells could be identified as macrophages and fibroblasts; in the postpartum uteri smooth muscle cells (SMC) were also found, containing cytoplasmic collagenous vacuoles. The morphology of intracellular collagen in SMC was similar to that observed in macrophages: fragments of banded collagen fibrils with a diameter corresponding to that of extracellular collagen were located within structures considered to be phagosomes. Limiting membranes were always smooth, most often in apposition to the fibrils that were single or packed in small groups; some cytoplasmic vacuoles contained banded elongated profiles barely discernable as collagen. The collagen fibrils within SMC of the involuting human uterus are regarded as a morphological manifestation of heterogenic enclosure of collagen fibrils and their intracellular degradation. It seems that in the postpartum uterus, where a substantial amount of collagen needs to be removed rapidly, both macrophages and SMC are involved in the process of collagen phagocytosis and degradation. These data suggest that SMC may be involved in the cellular mechanism for collagen breakdown in remodelling SMC-containing tissues like the uterus and the vascular wall.  相似文献   

5.
We examined electron-microscopically and histochemically the ultrastructural features of the intraodontoblastic collagen fibrils of the mouse. These collagen fibrils were most common in secreting odontoblasts (pre-odontoblasts) of the maturating stages. In such cells they were most numerous at the peripheral zone of the Golgi apparatus, and were sometimes seen in odontoblastic processes. Intraodontoblastic collagen fibrils also had morphological variations including a banded structure enclosed by limiting membranes of vacuoles, fusion with primary lysosomes, and an electron-dense material covering with a structure that was not banded. Study of acid phosphatase activity showed that these structural changes were caused by the degradation of intraodontoblastic collagen fibrils by lysosomes. The results of studies of the permeation of lanthanum nitrate and the alkaline phosphatase reaction showed that these collagen fibrils were separate from the extracellular matrix and that there was no phagocytosis of the odontoblasts.  相似文献   

6.
An ultrastructural cytochemical study of acid phosphatase activity performed in mouse endometrium on the second day of pregnancy showed that stromal cells which were heavily labeled by the cytochemical reaction had disarranged organelles. On the other hand, the cytoplasm of several stromal cells had collagen-containing phagosomes that were also labeled, indicating that the collagen fibrils were being digested by lysosomal enzymes. It is suggested that cell death and phagocytosis of collagen are events of the remodeling of the mouse endometrium that occur prior to decidualization.  相似文献   

7.
Full thickness rabbit skin explants were cultured on plastic dish for 1 week and the sequential morphological changes were examined daily by light and electron microscopy. During the cultured period, bundles of dermal collagen fibres gradually loosened and were removed from the upper dermis and from the cut margin of the explant, which was covered by a sheet of migrating epidermal cells. In these areas, cells containing phagocytosed collagen fibrils were observed from the 3rd day to the end of the culture period. These cells containing phagocytosed collagen fibrils included dermal fibroblasts and macrophages, epidermal keratinocytes and endothelial cells lining blood vessels. The presence of acid phosphatase activity in vacuoles containing the collagen fibrils suggested that intracellular degradation of collagen was occurring. In addition, extracellular collagen degradation was recognized around fibroblasts and beneath the migrating epidermis by the high collagenolytic activity at these sites. These findings suggest that both intra- and extracellular collagen degradation may participate in collagen removal from dermal connective tissue in cultured skin explants.  相似文献   

8.
The mechanism of phagocytosis of pathogens remains to be fully characterized. We report a novel phagocytosis pathway for Pseudomonas aeruginosa, which is initiated by cholesterol-rich membrane rafts and is dependent on Lyn, primarily an immune regulator with both positive and negative roles. Blocking of Lyn or blocking of cholesterol synthesis significantly inhibited phagocytosis by alveolar macrophages. We found that Lyn, via Src homology 2 and 3 domains, bound to and then activated PI3K and Akt to regulate intracellular routing of the engulfed P. aeruginosa. Further analysis indicates that Lyn and raft components entered in phagosomes and late lysosomes. Finally, respiratory burst was dependent on Lyn and membrane rafts, as confirmed by small interfering RNA and dominant-negative strategies. Our investigations demonstrate that Lyn along with membrane rafts plays a fundamental role in phagocytosis by alveolar macrophages during infection.  相似文献   

9.
Kupffer cells of fetal rat liver were examined by ultrastructural cytochemical methods to reveal acid phosphatase (AcPase) activity in lysosomes. Elongated cisternae, 940-1150 A in width containing AcPase reaction product, were identified in these cells. These cisternae were sometimes in continuity with phagosomes containing engulfed erythrocytes. Observations suggest that such cisternae may partly encircle these phagosomes. The relationships of these cisternae to GERL (Golgi Endoplasmic Reticulum Lysosomes) is discussed.  相似文献   

10.
In an attempt to determine whether phagocytosis of collagen by fibroblasts involves binding of the fibril to the plasma membrane, the effect of the lectin concanavalin A (Con A) was studied in an in vitro model system. Metacarpal bone rudiments from 19-day-old mouse fetuses were incubated with varying concentrations of the lectin. Quantitative electron microscopic analysis indicated that Con A caused a dose-related increase in the amount of phagocytosed collagen fibrils in periosteal fibroblasts, suggesting either an enhanced uptake or a decreased intracellular breakdown of fibrils. Since a Con A-inducible increase was not seen in the combined presence of both the lectin and the proteinase inhibitor leupeptin, which is known to inhibit the intracellular digestion of phagocytosed fibrillar collagen, it is unlikely that Con A stimulated phagocytosis. Based on the finding that Con A interfered with the digestion of a synthetic substrate by the collagenolytic lysosomal enzyme cathepsin B it is suggested that the augmentation of intracellular fibrillar collagen under the influence of the lectin was due to a decreased intracellular digestion. Since Con A did not inhibit the uptake of collagen fibrils by the fibroblasts it is concluded that Con A-inhibitable binding sites for collagen molecules are unlikely to be involved in phagocytosis of collagen fibrils by fibroblasts.  相似文献   

11.
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.  相似文献   

12.
Collagen phagocytosis is a critical mediator of extracellular matrix remodeling. Whereas the binding step of collagen phagocytosis is facilitated by Ca2+-dependent, gelsolin-mediated severing of actin filaments, the regulation of the collagen internalization step is not defined. We determined here whether phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] regulation of gelsolin is required for collagen internalization. In gelsolin null fibroblasts transfected with gelsolin severing mutants, actin severing and collagen binding were strongly impaired but internalization and actin monomer addition at collagen bead sites were much less affected. PI(4,5)P2 accumulated around collagen during internalization and was associated with gelsolin. Cell-permeable peptides mimicking the PI(4,5)P2 binding site of gelsolin blocked actin monomer addition, the association of gelsolin with actin at phagosomes, and collagen internalization but did not affect collagen binding. Collagen beads induced recruitment of type 1 gamma phosphatidylinositol phosphate kinase (PIPK1gamma661) to internalization sites. Dominant negative constructs and RNA interference demonstrated a requirement for catalytically active PIPK1gamma661 for collagen internalization. We conclude that separate functions of gelsolin mediate sequential stages of collagen phagocytosis: Ca2+-dependent actin severing facilitates collagen binding, whereas PI(4,5)P2-dependent regulation of gelsolin promotes the actin assembly required for internalization of collagen fibrils.  相似文献   

13.
Phagocytosis in macrophages is often studied using inert polymer microspheres. An implicit assumption in these studies is that such particles contain little or no specific information in their structure that affects their intracellular fate. We tested that assumption by examining macrophage phagosomes containing different kinds of particles and found that although all particles progressed directly to lysosomes, their subsequent fates varied. Within 15 min of phagocytosis, >90% of phagosomes containing opsonized sheep erythrocytes, poly-e-caprolactone microspheres, polystyrene microspheres (PS), or polyethylene glycol- conjugated PS merged with the lysosomal compartment. After that point, however, the characteristics of phagolysosomes changed in several ways that indicated differing degrees of continued interaction with the lysosomal compartment. Sheep erythrocyte phagolysosomes merged together and degraded their contents quickly, poly-e-caprolactone phagolysosomes showed intermediate levels of interaction, and PS phagolysosomes became isolated within the cytoplasm. PS were relatively inaccessible to an endocytic tracer, Texas red dextran, added after phagocytosis. Moreover, immunofluorescent staining for the lysosomal protease cathepsin L decreased in PS phagolysosomes to 23% by 4 h after phagocytosis, indicating degradation of the enzyme without replacement. Finally, PS surface labeled with fluorescein-labeled albumin showed a markedly reduced rate of protein degradation in phagolysosomes, when compared to rates measured for proteins in or on other particles. Thus, particle chemistry affected both the degree of postlysosomal interactions with other organelles and, consequently, the intracellular half-life of particle-associated proteins. Such properties may affect the ability of particles to deliver macromolecules into the major histocompatibility complex class I and II antigen presentation pathways.  相似文献   

14.
Mature, microbicidal phagosomes are rich in the lysosome-associated membrane proteins, LAMP-1 and LAMP-2, two highly glycosylated proteins presumed to form a protective barrier lining the phagosomal membrane. Pathogenic Neisseria secrete a protease that selectively cleaves LAMP-1, suggesting a critical role for LAMP proteins in the microbicidal competence of phagosomes. To determine the requirement for LAMP proteins in bacterial phagocytosis, we employed embryonic fibroblasts isolated from knockout mice lacking lamp-1, lamp-2 or both genes, as well as small interfering RNA (siRNA)-mediated knockdown of LAMP expression in a human epithelial cell line. Like wild-type cells, those lacking either LAMP-1 or LAMP-2 alone formed phagosomes that gradually acquired microbicidal activity and curtailed bacterial growth. In contrast, LAMP-1 and LAMP-2 double-deficient fibroblasts failed to kill engulfed Neisseria gonorrhoeae. In these cells, maturation was arrested prior to the acquisition of Rab7. As a result, the Rab7-interacting lysosomal protein (RILP, a Rab7 effector) was not recruited to the phagosomes, which were consequently unable to undergo dynein/dynactin-mediated centripetal displacement along microtubules and remained in a predominantly peripheral location. The inability of such phagosomes to migrate towards lysosomes likely contributed to their incomplete maturation and inability to eliminate bacteria. These findings suggest that neisserial degradation of LAMP-1 is not sufficient to affect its survival within the phagosome, and establish LAMP proteins as critical components in the process whereby phagosomes acquire microbicidal capabilities.  相似文献   

15.
uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV   总被引:4,自引:0,他引:4  
Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical for targeted delivery of collagen IV to lysosomes for degradation implicating the receptor in normal and malignant extracellular matrix degradation. A similar localization pattern was observed for collagen V, suggesting that uPARAP/endo180 might be generally involved in collagen degradation.  相似文献   

16.
G Ferrari  H Langen  M Naito  J Pieters 《Cell》1999,97(4):435-447
Mycobacteria are intracellular pathogens that can survive within macrophage phagosomes, thereby evading host defense strategies by largely unknown mechanisms. We have identified a WD repeat host protein that was recruited to and actively retained on phagosomes by living, but not dead, mycobacteria. This protein, termed TACO, represents a component of the phagosome coat that is normally released prior to phagosome fusion with or maturation into lysosomes. In macrophages lacking TACO, mycobacteria were readily transported to lysosomes followed by their degradation. Expression of TACO in nonmacrophages prevented lysosomal delivery of mycobacteria and prolonged their intracellular survival. Active retention of TACO on phagosomes by living mycobacteria thus represents a mechanism preventing cargo delivery to lysosomes, allowing mycobacteria to survive within macrophages.  相似文献   

17.
Summary Collagen fibrils with a main period banding of 610 Å and 220 Å in width were observed in the blastocoel of 72-h embryos of the sea urchin,Strongylocentrotus purpuratus. Non-striated fibrils of 50 Å diameter were also observed. The collagen is seen in highest concentration in the vicinity of mesenchyme cells which are richly endowed with endoplasmic reticulum and secretory vesicles. A role for collagen in cell attachment, orientation and spicule formation is discussed.  相似文献   

18.
目的 评价聚乳酸聚乙醇酸膜、聚β羟基丁酯膜和胶原膜的结构、生物相容性及其在组织工程血管中的应用前景.方法 HE、胶原染色,扫描电镜观察材料的结构.新西兰兔15只皮下植入材料,于4、6、8和12周取出观察其组织反应和降解情况.将犬股动脉间质细胞种植于聚乳酸聚乙醇酸膜、胶原膜上,观察其形态.结果 聚乳酸聚乙醇酸膜、聚β羟基...  相似文献   

19.
After incubation of formalin-fixed, frozen sections of kidney and liver from peroxidase-treated rats in an azo dye medium for acid phosphatase, and after subsequent incubation of the same sections with benzidine, phagosomes were stained blue and lysosomes were stained red in the same cells. It was observed that newly formed phagosomes were separate from preexisting lysosomes in the tubule cells of the kidney and in the Kupffer cells of the liver at early periods after treatment with peroxidase. At later periods, the color reactions for acid phosphatase and peroxidase occurred in the same granules. The reaction of peroxidase decreased gradually and disappeared from the phago-lysosomes after 2 to 3 days, whereas the reaction for acid phosphatase persisted. In the liver, most of the injected protein was concentrated in large phagosomes located at the periphery of the cells lining the sinusoids. The peribiliary lysosomes showed a relatively weak reaction for peroxidase in the proximity of the portal veins. After pathological changes of permeability, phagosomes and lysosomes lost their normal location and fused, in the interior of many liver cells, to form large vacuoles or spheres. The effects of a reduced load of peroxidase and the effects of the pretreatment with another protein (egg white) on the phago-lysosomes of the kidney were tested. The relationship of the fusion of phagosomes with lysosomes to the size of normal and pathological phago-lysosomes was discussed.  相似文献   

20.
The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100-microm thick fibrillar collagen matrices and cultured for 24 h in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p<0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase-dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号