首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When grown on methylated amines as a carbon source, Methylophilus methylotrophus synthesizes an electron transfer flavoprotein (ETF) which is the natural electron acceptor of trimethylamine dehydrogenase. It is composed of two dissimilar subunits of 38,000 and 42,000 daltons and 1 mol of flavin adenine dinucleotide. It was reduced by trimethylamine dehydrogenase to a stable anionic semiquinone form, which could not be converted, either enzymatically or chemically, to the fully reduced dihydroquinone. This ETF exhibited spectral properties which were nearly identical to ETFs from bacterium W3A1, Paracoccus denitrificans, and pig liver mitochondria. M. methylotrophus ETF cross-reacted immunologically and enzymatically with the ETF of bacterium W3A1 but not with the other two ETFs. In M. methylotrophus and bacterium W3A1, ETF and trimethylamine dehydrogenase were each expressed during growth on trimethylamine and were each absent during growth on methanol.  相似文献   

2.
Electron-transferring flavoproteins (ETFs) from human and Paracoccus denitrificans have been analyzed by small angle x-ray scattering, showing that neither molecule exists in a rigid conformation in solution. Both ETFs sample a range of conformations corresponding to a large rotation of domain II with respect to domains I and III. A model of the human ETF.medium chain acyl-CoA dehydrogenase complex, consistent with x-ray scattering data, indicates that optimal electron transfer requires domain II of ETF to rotate by approximately 30 to 50 degrees toward domain I relative to its position in the x-ray structure. Domain motion establishes a new "robust engineering principle" for electron transfer complexes, tolerating multiple configurations of the complex while retaining efficient electron transfer.  相似文献   

3.
Here we report the crystal structures of a ternary electron transfer complex showing extensive motion at the protein interface. This physiological complex comprises the iron-sulfur flavoprotein trimethylamine dehydrogenase and electron transferring flavoprotein (ETF) from Methylophilus methylotrophus. In addition, we report the crystal structure of free ETF. In the complex, electron density for the FAD domain of ETF is absent, indicating high mobility. Positions for the FAD domain are revealed by molecular dynamics simulation, consistent with crystal structures and kinetic data. A dual interaction of ETF with trimethylamine dehydrogenase provides for dynamical motion at the protein interface: one site acts as an anchor, thereby allowing the other site to sample a large range of interactions, some compatible with rapid electron transfer. This study establishes the role of conformational sampling in multi-domain redox systems, providing insight into electron transfer between ETFs and structurally distinct redox partners.  相似文献   

4.
The most positive redox potential ever recorded for a flavin adenine dinucleotide (FAD) containing protein has been measured for an electron-transfer flavoprotein (ETF) synthesized by Methylophilus methylotrophus. This potential value, 0.196 V versus the standard hydrogen electrode (vs SHE), was measured at pH 7.0 for the one-electron reduction of fully oxidized ETF (ETFox) to the red anionic semiquinone form of ETF (ETF.-). Quantitative formation of ETF.- was observed. The first successful reduction of ETF from M. methylotrophus to its two-electron fully reduced form was also achieved. Although addition of the second electron to ETF.- was extremely slow, the potential value measured for this reduction was -0.197 V vs SHE, suggesting a kinetic rather than thermodynamic barrier to two-electron reduction. These data are believed to be consistent with the postulated catalytic function of ETF to accept one electron from the iron-sulfur cluster of trimethylamine dehydrogenase (TMADH). The second electron reduction appears to have no catalytic function. The very positive potential measured for this ETF and the wide separation of potentials for the two electron reduction steps show that this ETF is a unique and interesting flavoprotein. In addition, this work highlights that while ETFs exhibit similar structural and spectral properties, they display wide variations in redox properties.  相似文献   

5.
The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.  相似文献   

6.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

7.
The electron-transferring proteins, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro by fluorescence spectroscopy. Flavin adenine dinucleotide (FAD) was found to be capable of a slow and spontaneous release from ETF, which is accompanied by an increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is sharply activated by TMAD preparations that induce a local conformational transition in ETF. The values of tryptophan fluorescence polarization and lifetime and the use of the Levshin-Perrin equation helped show that the size of protein particles remain unchanged upon the TMAD and ETF mixing; i.e., these proteins themselves do not form a stable complex with each other. The protein mixture did not release flavin from ETF in the presence of trimethylamine and formaldehyde. In this case, a stable complex between the proteins appeared to be formed under the action of formaldehyde. Upon a short-term incubation of ETF with ferricyanide, FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP. This fact explains the previous detection of AMP in ETF preparations by some researches. A fluorescence method was proposed for distinguishing FAD from FMN in solution using ethylene glycol. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

8.
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.  相似文献   

9.
TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.  相似文献   

10.
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.  相似文献   

11.
Cellulose, the main structural component of plant cell walls, is the most abundant carbohydrate polymer in nature. To break down plant cell walls, anaerobic microorganisms have evolved a large extracellular enzyme complex termed cellulosome. This megadalton catalytic machinery organizes an enzymatic assembly, tenaciously bound to a scaffolding protein via specialized intermodular "cohesin-dockerin" interactions that serve to enhance synergistic activity among the different catalytic subunits. Here, we report the solution structure properties of cellulosome-like assemblies analyzed by small angle x-ray scattering and molecular dynamics. The atomic models, generated by our strategy for the free chimeric scaffoldin and for binary and ternary complexes, reveal the existence of various conformations due to intrinsic structural flexibility with no, or only coincidental, inter-cohesin interactions. These results provide primary evidence concerning the mechanisms by which these protein assemblies attain their remarkable synergy. The data suggest that the motional freedom of the scaffoldin allows precise positioning of the complexed enzymes according to the topography of the substrate, whereas short-scale motions permitted by residual flexibility of the enzyme linkers allow "fine-tuning" of individual catalytic domains.  相似文献   

12.
A pair of proteins involved in electron transfer, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro. It was demonstrated by fluorescence spectroscopy that flavin adenine dinucleotide (FAD) can slowly and spontaneously be released from ETF. This release is followed by increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is dramatically activated by TMAD preparations that induce a local conformational transition in ETF. It was shown on the basis of the values of tryptophan polarization and lifetime with the use of the Levshin–Perrin equation that the sizes of protein particles were not changed after mixing of TMAD and ETF; i.e., these proteins by themselves did not form a stable complex with each other. The release of flavin from ETF did not occur in the presence of trimethylamine and formaldehyde in the protein mixture. In this case, a stable complex between the proteins is probably formed with the participation of formaldehyde. FAD is hydrolyzed to flavin mononucleotide (FMN) and AMP after a short-term incubation of ETF with ferricyanide. This fact explains the previous detection of AMP in ETF preparations by other researches. A fluorescence method for distinguishing FAD from FMN in solution with the use ethylene glycol is proposed.  相似文献   

13.
C-terminal Src kinase (Csk) phosphorylates and down-regulates the Src family tyrosine kinases (SFKs). Crystallographic studies of Csk found an unusual arrangement of the SH2 and SH3 regulatory domains about the kinase core, forming a compact structure. However, recent structural studies of mutant Csk in the presence of an inhibitor indicate that the enzyme accesses an expanded structure. To investigate whether wt-Csk may also access open conformations we applied small angle x-ray scattering (SAXS). We find wt-Csk frequently occupies an extended conformation where the regulatory domains are removed from the kinase core. In addition, all-atom structure-based simulations indicate Csk occupies two free energy basins. These basins correspond to ensembles of distinct global conformations of Csk: a compact structure and an extended structure. The transitions between these structures are entropically driven and accessible via thermal fluctuations that break local interactions. We further characterized the ensemble by generating theoretical scattering curves for mixed populations of conformations from both basins and compared the predicted scattering curves to the experimental profile. This population-combination analysis is more consistent with the experimental data than any rigid model. It suggests that Csk adopts a broad ensemble of conformations in solution, populating extended conformations not observed in the crystal structure that may play an important role in the regulation of Csk. The methodology developed here is broadly applicable to biological macromolecules and will provide useful information about what ensembles of conformations are consistent with the experimental data as well as the ubiquitous dynamic reversible assembly processes inherent in biology.  相似文献   

14.
The conformation of polysaccharide PGG-Glucan, isolated from yeast cell walls, in aqueous solution was investigated by small angle x-ray scattering (SAXS) and multidetector gel permeation chromatography coupled with postcolumn delivery (GPC/PCD) techniques in comparison with scleroglucan. It was shown that both polysaccharides exhibit a rigid rod-like conformation in aqueous solution by SAXS experiments. The mass per unit length (M/L) and radius (R) of rod cross section of PGG-Glucan were measured to be 6300 daltons/nm and 1.89 nm, while those of scleroglucan are 2300 and 0.83, respectively. Utilizing a GPC/light scattering technique, the average aggregation number of PGG-Glucan is 9, while that of scleroglucan is around 3. From the comparison of the M/L and R of the respective rod cross sections as well as their aggregation number data, it is concluded that PGG-Glucan is composed of triple helices, which tend to aggregate as triplets in solution, whereas scleroglucan is composed of a single triple helix. The aggregation number distribution of PGG-Glucan was found to range from 1 to about 25 determined by GPC/PCD. From the observation of a Debye-Scherrer ring type of peak in the macroscopic scattering cross section of PGG-Glucan by SAXS, the existence of a small amount of ordered clusters of PGG-Glucan can be deduced. The "lattice parameter" of these ordered fasces-like clusters is consistent with the radius of the individual triple-helical rods forming a microfibrillar superstructure. These results indicate that higher aggregated forms of PGG-Glucan containing up to 8 triple helices behave as ordered fasces-like clusters. We conclude that PGG-Glucan is triple-helix aggregates formed by rigid rods stacking together side by side. We propose a molecular structural model for PGG-Glucan conformations.  相似文献   

15.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   

16.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   

17.
A molecular envelope of the beta-mannosidase from Trichoderma reesei has been obtained by combined use of solution small-angle X-ray scattering (SAXS) and protein crystallography. Crystallographic data at 4 A resolution have been used to enhance informational content of the SAXS data and to obtain an independent, more detailed protein shape. The phased molecular replacement technique using a low resolution SAXS model, building, and refinement of a free atom model has been employed successfully. The SAXS and crystallographic free atom models exhibit a similar globular form and were used to assess available crystallographic models of glycosyl hydrolases. The structure of the beta-galactosidase, a member of a family 2, clan GHA glycosyl hydrolases, shows an excellent fit to the experimental molecular envelope and distance distribution function of the beta-mannosidase, indicating gross similarities in their three-dimensional structures. The secondary structure of beta-mannosidase quantified by circular dichroism measurements is in a good agreement with that of beta-galactosidase. We show that a comparison of distance distribution functions in combination with 1D and 2D sequence alignment techniques was able to restrict the number of possible structurally homologous proteins. The method could be applied as a general method in structural genomics and related fields once protein solution scattering data are available.  相似文献   

18.
The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the solution data.  相似文献   

19.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   

20.
We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号