首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disulfide bond formation in Escherichia coli is a catalyzed reaction accomplished by DsbA. We found that null mutations in a new porin gene, ompL, allowed a total bypass of the DsbA requirement for protein oxidation. These mutations acted as extragenic null suppressors for dsbA, and restored normal folding of alkaline phosphatase and relieved sensitivity to dithiothreitol. ompL dsbA double mutants were completely like wild-type mutants in terms of motility and lack of mucoidy. This suppression was not dependent on DsbC and DsbG, since the oxidation status of these proteins was unaltered in ompL dsbA strains. Purified OmpL allowed diffusion of small solutes, including sugars, but the suppression was not dependent on the carbon sources used. Suppression by ompL null mutations required DsbB, leading us to propose a hypothesis that DsbB oxidizes yet unidentified, low-molecular-weight redox agents in the periplasm. These oxidized agents accumulate and substitute for DsbA if their leakage into the medium is prevented by the absence of OmpL, presumed to form a specific channel for their diffusion.  相似文献   

2.
F and R27 are conjugative plasmids of enteric bacteria belonging to the IncF and IncHI1 plasmid incompatibility groups, respectively. Based on sequence analysis, two genes of the F transfer region, traF and trbB, and three genes of the R27 transfer region, trhF, dsbC, and htdT, are predicted to encode periplasmic proteins containing a C-terminal thioredoxin fold. The C-X-X-C active-site motif of thioredoxins is present in all of these proteins except TraF(F). Escherichia coli carrying a dsbA mutation, which is deficient in disulfide bond formation, cannot synthesize pili and exhibits hypersensitivity to dithiothreitol (DTT) as monitored by mating ability. Overproduction of the E. coli disulfide bond isomerase DsbC, TrbB(F), DsbC(R27), or HtdT(R27), but not TraF(F) or TrhF(R27), reverses this hypersensitivity to DTT. Site-directed mutagenesis established that the C-X-X-C motif was necessary for this activity. Secretion into the periplasm of the C-terminal regions of TrbB(F) and DsbC(R27), containing putative thioredoxin folds, but not TrhF(R27), partially complemented the host dsbA mutation. A trbB(F) deletion mutant showed a 10-fold-lower mating efficiency in an E. coli dsbC null strain but had no phenotype in wild-type E. coli, suggesting redundancy in function between TrbB(F) and E. coli DsbC. Our results indicate that TrbB(F), DsbC(R27), and HtdT(R27) are putative disulfide bond isomerases for their respective transfer systems. TraF(F) is essential for conjugation but appears to have a function other than disulfide bond chemistry.  相似文献   

3.
Genetic studies have identified a number of genes whose products appear to be required for the transport of the group A colicins and the single-stranded DNA of certain filamentous bacteriophages into Escherichia coli. Mutations in these genes allow normal binding of the colicins to their outer-membrane receptors and of the bacteriophage of the tip of specific conjugative pili, but do not allow translocation of the macromolecules to their target. These mutations have been designed 'tolerant' (tol) mutations and the protein products specified by these genes appear to comprise part of a transport system known as the Tol import system. Some of these genes have been isolated, sequenced and their protein products localized to the membranes or periplasm of E. coli. Information is also available regarding the domains of the colicins or phage proteins which interact with the Tol proteins. A preliminary model of the location and possible interactions of the Tol proteins is presented.  相似文献   

4.
We have identified and functionally characterized a new Escherichia coli gene, dsbG , whose product is involved in disulphide bond formation in the periplasm. The dsbG gene was cloned from a multicopy plasmid library lacking the dsbB redox protein-encoding gene. Multicopy dsbG -carrying clones were selected, since they allowed E. coli to grow at lethal concentrations of dithiothreitol. In a complementary genetic approach, point mutations were independently obtained and mapped to the dsbG gene. Such mutations led simultaneously to a dithiothreitol-sensitive phenotype and an increased σE-dependent heat shock response, which reflects the presence of misfolded proteins in the extracytoplasm. In agreement with these observations, dsbG mutants were shown to accumulate reduced forms of a variety of disulphide bond-containing proteins in the periplasm. This DsbG defect could be rescued by addition to the growth medium of either oxidized dithiothreitol or cystine, or by overexpression of the dsbA or dsbB genes. DsbG is synthesized as a precursor form of 27.5 kDa and processed to a 25.7 kDa mature species located in the periplasm. DsbG was overproduced, purified to homogeneity and shown to have redox properties of thiol–disulphide oxidoreductases in vitro . Replacement of the first Cys residue of the predicted active site, Phe–(Xaa)4–Cys–Pro–Tyr–Cys by Ala, completely inactivated DsbG protein function. Taken together, all our results demonstrate that DsbG acts in vivo as an efficient thiol–disulphide oxidase. In addition, dsbG is the first member of the dsb family for which null mutations are conditionally lethal and can be propagated only if supplemented with oxidants in the growth medium. We propose that the main role of DsbG is to maintain the proper redox balance between the DsbA/DsbB and DsbC systems.  相似文献   

5.
We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92% and 38% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.  相似文献   

6.
Cells of Escherichia coli take up vitamin B(12) (cyano-cobalamin [CN-Cbl]) and iron chelates by use of sequential active transport processes. Transport of CN-Cbl across the outer membrane and its accumulation in the periplasm is mediated by the TonB-dependent transporter BtuB. Transport across the cytoplasmic membrane (CM) requires the BtuC and BtuD proteins, which are most related in sequence to the transmembrane and ATP-binding cassette proteins of periplasmic permeases for iron-siderophore transport. Unlike the genetic organization of most periplasmic permeases, a candidate gene for a periplasmic Cbl-binding protein is not linked to the btuCED operon. The open reading frame termed yadT in the E. coli genomic sequence is related in sequence to the periplasmic binding proteins for iron-siderophore complexes and was previously implicated in CN-Cbl uptake in SALMONELLA: The E. coli yadT product, renamed BtuF, is shown here to participate in CN-Cbl uptake. BtuF protein, expressed with a C-terminal His(6) tag, was shown to be translocated to the periplasm concomitant with removal of a signal sequence. CN-Cbl-binding assays using radiolabeled substrate or isothermal titration calorimetry showed that purified BtuF binds CN-Cbl with a binding constant of around 15 nM. A null mutation in btuF, but not in the flanking genes pfs and yadS, strongly decreased CN-Cbl utilization and transport into the cytoplasm. The growth response to CN-Cbl of the btuF mutant was much stronger than the slight impairment previously described for btuC, btuD, or btuF mutants. Hence, null mutations in btuC and btuD were constructed and revealed that the btuC mutant had a strong impairment similar to that of the btuF mutant, whereas the btuD defect was less pronounced. All mutants with defective transport across the CM gave rise to frequent suppressor variants which were able to respond at lower levels of CN-Cbl but were still defective in transport across the CM. These results finally establish the identity of the periplasmic binding protein for Cbl uptake, which is one of few cases where the components of a periplasmic permease are genetically separated.  相似文献   

7.
The prlA/secY gene, which codes for an integral membrane protein component of the Escherichia coli protein export machinery, is the locus of the strongest suppressors of signal sequence mutations. We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants. The export efficiency can be substantial; in a strain carrying the prlA4 allele, 30% of signal-sequenceless alkaline phosphatase is exported to the periplasm. Other components of the E.coli export machinery, including SecA, are required for this export. SecB is required for the export of signal-sequenceless alkaline phosphatase even though the normal export of alkaline phosphatase does not require this chaperonin. Our findings indicate that signal sequences confer speed and efficiency upon the export process, but that they are not always essential for export. Entry into the export pathway may involve components that so overlap in function that the absence of a signal sequence can be compensated for, or there may exist one or more means of entry that do not require signal sequences at all.  相似文献   

8.
The periplasm of Escherichia coli contains many proteins proposed to have redundant functions in protein folding. Using depletion analysis, we directly demonstrated that null mutations in skp and surA, as well as in degP and surA, result in synthetic phenotypes, suggesting that Skp, SurA, and DegP are functionally redundant. The Deltaskp surA::kan combination has a bacteriostatic effect and leads to filamentation, while the degP::Tn10 surA::kan combination is bactericidal. The steady-state levels of several envelope proteins are greatly reduced upon depletion of a wild-type copy of surA in both instances. We suggest that the functional redundancy of Skp, SurA, and DegP lies in the periplasmic chaperone activity. Taken together, our data support a model in which the periplasm of E. coli contains parallel pathways for chaperone activity. In particular, we propose that Skp and DegP are components of the same pathway and that SurA is a component of a separate pathway. The loss of either pathway has minimal effects on the cell, while the loss of both pathways results in the synthetic phenotypes observed.  相似文献   

9.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

10.
The TolA protein is involved in maintaining the integrity of the outer membrane of Escherichia coli, as mutations in tolA cause the bacteria to become hypersensitive to detergents and certain antibiotics and to leak periplasmic proteins into the medium. This protein also is required for the group A colicins to exert their effects and for many of the filamentous single-stranded bacteriophage to infect the bacterial cell. TolA is a three-domain protein, with the amino-terminal domain anchoring it to the inner membrane. The helical second domain is proposed to span the periplasmic space to allow the carboxyl-terminal third domain to interact with the outer membrane. A plasmid that allowed the synthesis and transport of the carboxyl-terminal third domain into the periplasmic space was constructed. The presence of an excess of this domain in the periplasm of a wild-type cell resulted in an increased sensitivity to deoxycholate, the release of periplasmic alkaline phosphatase and RNase into the medium, and an increased tolerance to colicins E1, E2, E3, and A. There was no effect on the cells' response to colicin D, which depends on TonB instead of TolA for its action. The presence of the free carboxyl-terminal domain of TolA in the periplasm in a tolA null mutation did not restore the wild-type phenotype, suggesting that this domain must be part of the intact TolA molecule to perform its function. Our results are consistent with a model in which the carboxyl-terminal domain of TolA interacts with components in the periplasm or on the inner surface of the outer membrane to function in maintaining the integrity of this membrane.  相似文献   

11.
We have identified a new folding catalyst, PpiD, in the periplasm of Escherichia coli. The gene encoding PpiD was isolated as a multicopy suppressor of surA, a mutation which severely impairs the folding of outer membrane proteins (OMPs). The ppiD gene was also identified based on its ability to be transcribed by the two-component system CpxR-CpxA. PpiD was purified to homogeneity and shown to have peptidyl-prolyl isomerase (PPIase) activity in vitro. The protein is anchored to the inner membrane via a single transmembrane segment, and its catalytic domain faces the periplasm. In addition, we have identified by site-directed mutagenesis some of the residues essential for its PPIase activity. A null mutation in ppiD leads to an overall reduction in the level and folding of OMPs and to the induction of the periplasmic stress response. The combination of ppiD and surA null mutations is lethal. This is the first time two periplasmic folding catalysts have been shown to be essential. Another unique aspect of PpiD is that its gene is regulated by both the Cpx two-component system and the sigma32 heat shock factor, known to regulate the expression of cytoplasmic chaperones.  相似文献   

12.
All of the superoxide dismutase isozymes of Escherichia coli have been shown to occur in the cell matrix, and none have been found in the periplasm. This was the case with both E. coli B and E. coli K-12, whether grown on a low phosphate medium or on a Trypticase soy-yeast extract medium. Alkaline phosphatase was used as a marker of the periplasm; adenosine deaminase and glucose 6-phosphate dehydrogenase were used as matrix markers, and consistent results were obtained by osmotic shock, spheroplast formation, and use of a diazonium salt that penetrates the periplasm but cannot cross the plasma membrane. A previous report that the iron-containing superoxide dismutase of E. coli is a periplasmic enzyme is now seen to have been in error.  相似文献   

13.
The replication origin (oriC) of the Escherichia coli chromosome has been cloned and the region essential for chromosomal replication has been delimited to 245 base pairs. In previous studies the ability of recombinants between oriC and ColE1-type vectors, to transform E. coli polA- strains was used to determine which nucleotides in oriC are essential for replication. In this paper we have used a different approach by isolating partial defective replication mutants of a minichromosome (pCM959) that contains oriC as the single replication origin. Our results demonstrate that many mutations are allowed within oriC that do not affect oriC function as measured by the ability to transform E. coli polA- strains. In the minimal oriC region we detected 8 mutations at positions that are conserved in the sequence of six bacterial origins. The implications of these results on previous work will be discussed. Our data also demonstrate that a mutation producing an oriC- phenotype may be suppressed by secondary mutations. An E. coli strain was found that facilitates the isolation of partially defective minichromosomes. The results with this strain indicate a specific function of the sequence surrounding the base pair at position 138.  相似文献   

14.
Bunny K  Liu J  Roth J 《Journal of bacteriology》2002,184(22):6235-6249
The LexA protein of Escherichia coli represses the damage-inducible SOS regulon, which includes genes for repair of DNA. Surprisingly, lexA null mutations in Salmonella enterica are lethal even with a sulA mutation, which corrects lexA lethality in E. coli. Nine suppressors of lethality isolated in a sulA mutant of S. enterica had lost the Fels-2 prophage, and seven of these (which grew better) had also lost the Gifsy-1 and Gifsy-2 prophages. All three phage genomes included a homologue of the tum gene of coliphage 186, which encodes a LexA-repressed cI antirepressor. The tum homologue of Fels-2 was responsible for lexA lethality and had a LexA-repressed promoter. This basis of lexA lethality was unexpected because the four prophages of S. enterica LT2 are not strongly UV inducible and do not sensitize strains to UV killing. In S. enterica, lexA(Ind(-)) mutants have the same phenotypes as their E. coli counterparts. Although lexA null mutants express their error-prone DinB polymerase constitutively, they are not mutators in either S. enterica or E. coli.  相似文献   

15.
Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.  相似文献   

16.
Bacterial cytokinesis is driven by the septal ring apparatus, the assembly of which in Escherichia coli is directed to mid-cell by the Min system. Despite suffering aberrant divisions at the poles, cells lacking the minCDE operon (Min(-)) have an almost normal growth rate. We developed a generally applicable screening method for synthetic lethality in E. coli, and used it to select for transposon mutations (slm) that are synthetically lethal (or sick) in combination with DeltaminCDE. One of the slm insertions mapped to envC (yibP), proposed to encode a lysostaphin-like, metallo-endopeptidase that is exported to the periplasm by the general secretory (Sec) pathway. Min(-) EnvC(-) cells showed a severe division defect, supporting a role for EnvC in septal ring function. Accordingly, we show that an EnvC-green fluorescent protein fusion, when directed to the periplasm via the twin-arginine export system, is both functional and part of the septal ring apparatus. Using an in-gel assay, we also present evidence that EnvC possesses murein hydrolytic activity. Our results suggest that EnvC plays a direct role in septal murein cleavage to allow outer membrane constriction and daughter cell separation. By uncovering genetic interactions, the synthetic lethal screen described here provides an attractive new tool for studying gene function in E. coli.  相似文献   

17.
Escherichia coli bacteria produce at least one 70 kD stress protein, the product of the dnaK gene. We have compared the rates of degradation of different types of abnormal proteins in null Ion E. coli with a partial deletion of the dnaK gene with the rates observed in null Ion dnaK+ cells. We have found that both canavanyl proteins and puromycyl polypeptides are degraded more slowly in the null dnaK mutants than in the dnaK+ strain. However, a temperature-sensitive mutant LacI protein is degraded more rapidly in the null dnaK strain. The stability of this temperature-sensitive LacI protein was also examined in detail under various other conditions.  相似文献   

18.
The periplasmic cyclic beta-1,2-glucan of Agrobacterium tumefaciens is believed to maintain high osmolarity in the periplasm during growth of the bacteria on low-osmotic-strength media. Strains with mutations in the chvA or chvB gene do not accumulate beta-1,2-glucan in their periplasm and exhibit pleiotropic phenotypes, including inability to form crown gall tumors on plants. We examined the effects of medium osmolarity to determine whether some or all of these phenotypes result from suboptimal periplasmic osmolarity. The mutants grew more slowly than wild-type cells and exhibited altered periplasmic and cytoplasmic protein content when cultured in low-osmotic-strength media, but not when cultured in high-osmotic-strength media. These observations support a role for periplasmic glucan in osmoadaptation. However, the mutants were avirulent and exhibited reduced motility regardless of the osmolarity of the medium. Therefore, beta-1,2-glucan may play roles in virulence and motility that are unrelated to its role in osmoadaptation.  相似文献   

19.
Bacterial flagellar motors use specific ion gradients to drive their rotation. It has been suggested that the electrostatic interactions between charged residues of the stator and rotor proteins are important for rotation in Escherichia coli. Mutational studies have indicated that the Na(+)-driven motor of Vibrio alginolyticus may incorporate interactions similar to those of the E. coli motor, but the other electrostatic interactions between the rotor and stator proteins may occur in the Na(+)-driven motor. Thus, we investigated the C-terminal charged residues of the stator protein, PomA, in the Na(+)-driven motor. Three of eight charge-reversing mutations, PomA(K203E), PomA(R215E), and PomA(D220K), did not confer motility either with the motor of V. alginolyticus or with the Na(+)-driven chimeric motor of E. coli. Overproduction of the R215E and D220K mutant proteins but not overproduction of the K203E mutant protein impaired the motility of wild-type V. alginolyticus. The R207E mutant conferred motility with the motor of V. alginolyticus but not with the chimeric motor of E. coli. The motility with the E211K and R232E mutants was similar to that with wild-type PomA in V. alginolyticus but was greatly reduced in E. coli. Suppressor analysis suggested that R215 may participate in PomA-PomA interactions or PomA intramolecular interactions to form the stator complex.  相似文献   

20.
Enzymatic colicins such as colicin E9 (ColE9) bind to BtuB on the cell surface of Escherichia coli and rapidly recruit a second coreceptor, either OmpF or OmpC, through which the N-terminal natively disordered region (NDR) of their translocation domain gains entry into the cell periplasm and interacts with TolB. Previously, we constructed an inactive disulfide-locked mutant ColE9 (ColE9(s-s)) that binds to BtuB and can be reduced with dithiothreitol (DTT) to synchronize cell killing. By introducing unique enterokinase (EK) cleavage sites in ColE9(s-s), we showed that the first 61 residues of the NDR were inaccessible to cleavage when bound to BtuB, whereas an EK cleavage site inserted at residue 82 of the NDR remained accessible. This suggests that most of the NDR is occluded by OmpF shortly after binding to BtuB, whereas the extreme distal region of the NDR is surface exposed before unfolding of the receptor-binding domain occurs. EK cleavage of unique cleavage sites located in the ordered region of the translocation domain or in the distal region of the receptor-binding domain confirmed that these regions of ColE9 remained accessible at the E. coli cell surface. Lack of EK cleavage of the DNase domain of the cell-bound, oxidized ColE9/Im9 complex, and the rapid detection of Alexa Fluor 594-labeled Im9 (Im9(AF)) in the cell supernatant following treatment of cells with DTT, suggested that immunity release occurred immediately after unfolding of the colicin and was not driven by binding to BtuB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号