首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of light quality on somatic embryogenesis of quince leaves   总被引:7,自引:0,他引:7  
The effect of light quality on somatic embryogenesis in quince BA 29 was investigated. 2,4-D induced leaves were exposed for 25 days to the following light quality treatments: dark, far-red, far-red+blue, far-red+red, blue, white, red+blue, red. After a further 20 days of white light exposure, somatic embryo production was recorded. Somatic embryogenesis was highest in cultures subjected to red light treatment, and decreased progressively with the transition to red+blue and to white. Overall, embryogenic competence showed a correlation with photoequilibrium. Phytochrome appeared to be inductive although this effect was adversely influenced by the blue absorbing photoreceptor, in particular at low photoequilibrium. Independently of light treatments applied, somatic embryos frequently showed severe morphological abnormalities. Conversion of somatic embryos to plantlets was not observed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Development of suitable strategy to overcome genotypic limitations of in vitro regeneration in sorghum would help utilize high yielding but poor tissue culture responsive genotypes in genetic manipulation programmes. A factorial experiment was conducted with two explants (immature embryos and inflorescences), eight genotypes (five Sorghum sudanense and three Sorghum bicolor genotypes), three levels of 2,4-D (1 mg l−1, 3 mg l−1, and 5 mg l−1), and two levels of kinetin (0.0 mg l−1 and 0.5 mg l−1). The induced callus was transferred to the regeneration media with factorial combinations of IAA (1.0 mg l−1 and 2.0 mg l−1) and kinetin (0.5 mg l−1 and 1.0 mg l−1). S. sudanense regenerated at significantly higher frequency (38.91%) and produced shoots more intensely (2.2 shoots/callus) than S. bicolor (26.93%, 1.26 shoots/callus). Immature inflorescences regenerated at a much higher frequency (46.48%) and produced significantly more number of shoots (2.71 shoots/callus) than immature embryos (22.35%, 0.99 shoots/callus). Moreover, differences for plant regeneration between genotypes of the same species were minimal when using immature inflorescences. Increase in the 2,4-D concentration in callus induction media exhibited inhibitory effect on callus induction, growth, shoot induction and number of shoots/callus but inclusion of kinetin in callus induction media improved these responses. Use of immature inflorescence explant and inclusion of kinetin in callus induction media could overcome genotypic limitations of plant regeneration to a large extent. The extent of variability, heritability and expected genetic advance was more in plant regeneration traits than in callus induction traits. This indicated that the variability in respect of these attributes in the genotypes may be due to the additive gene action and selection of genotypes for these characters would be rewarding.  相似文献   

3.
The turf-type bermudagrasses are genetically variable and do not respond uniformly to tissue culture and plant regeneration protocols. We evaluated the callus induction response of two explant types, young inflorescences and nodes, from multiple genotypes including triploid TifSport, TifEagle, and Tift97-4 and tetraploid Tift93-132, Tift93-135, Tift93-156 and Tift93-157 on MS medium supplemented with 1–1.5 mg l−1 2,4-D + 0.01 mg l−1 BA + 1.16 g l−1 proline. Four types of callus were observed. Type I was fluffy, soft, and white non-embryogenic callus, common to all cultures. Type II was globular, transparent, and hard, but sticky callus, which was pre-embryogenic and could be selected for subculture. Type III callus was transparent, compact, and embryogenic. Type IV callus was opaque white and compact. Both Type III and Type IV calluses were embryogenic and regenerative. A combination of gelling agents in the medium (2 g l−1 Gelrite and 5 g l−1 agar) improved callus quality and increased the rate of compact callus formation during subculture. Embryogenesis from compact callus was observed in TifEagle, TifSport and Tift93-132, and shoots were regenerated on MS medium with 0.1 mg l−1 2,4-D + 0.5–4.0 mg l−1 BA. Low intensity light treatment (30 μmol m2 s−1 of cool white fluorescence) to callus before regeneration greatly enhanced regeneration frequency from 6.7% to 40% in recalcitrant TifSport.  相似文献   

4.
Seashore paspalum (Paspalum vaginatum Swartz) is a salt tolerant, fine textured turfgrass used on golf courses in coastal, tropical, and subtropical regions. A callus induction and plant regeneration protocol for this commercially important turfgrass species has been developed. Induction of highly regenerable callus with approximately 400 shoots per cultured immature inflorescence (1 cm in length) was achieved by culturing 0.2 cm segments on media with 3 mg l−1 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.1 or 1.0 mg l−1 benzylaminopurine (BA). A multifactorial experiment demonstrated the combination of 3 mg l−1 dicamba and 1.0 mg l−1 BA for induction of callus resulted in 12 times higher plant regeneration frequency compared to 3 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone or ten times higher plant regeneration frequency than the combination of 3 mg l−1 2,4-D and 1.0 mg l−1 BA. These results are expected to support the development of a genetic transformation protocol for seashore paspalum.  相似文献   

5.
Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass and pasture grass. To explore the potential use of biotechnical tools in breeding of centipedegrass, we established an efficient plant regeneration system for this species. Four basal media and 24 combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BAP) were examined for their effects on callus induction from mature seed explants. Twenty combinations of naphthaleneacetic acid (NAA) and BAP were tested for their effect on plant regeneration. Results indicated that Murashige and Skoog basal medium supplemented with 4.5 mg l−1 2,4-D and 1 mg l−1 BAP was the best medium for callus induction, while the combination of 2 mg l−1 BAP and 1 mg l−1 NAA induced the highest rate of regeneration and development of shoots and roots. This work provides a basis for the breeding of centipedegrass through somaclonal variation and genetic transformation.  相似文献   

6.
Culture conditions for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Ranunculus kazusensis are described. Zygotic embryos formed white nodular structures and pale-yellow calluses at a frequency of 84.9% when cultured on half-strength Schenk and Hildebrandt (SH) medium supplemented with 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). However, the frequency of white nodular structure and off-white callus formation decreased with an increasing concentration of 2,4-D up to 10 mg l−1, when the frequency reached 25%. Cell suspension cultures were established from zygotic embryo-derived pale-yellow calluses using half-strength SH medium supplemented with 0.1 mg l−1 of 2,4-D. Upon plating onto half-strength SH basal medium, over 90% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity at a survival rate of over 90% in a growth chamber. The plant regeneration system established in this study can be applied to mass propagation and conservation of this species.  相似文献   

7.
An in vitro protocol for efficient plant regeneration has been developed from mature embryo explants of highland barley (Hordeum vulgare L. var. nudum Hk. f.) under endosperm-supported culture. Embryos with (endosperm-supported culture, ES) or without endosperm (non-endosperm-supported culture, NES) were excised from mature seeds and cultured on MS medium supplemented with various concentrations of 2,4-D (1–5 mg l−1) for callus induction. The percentage of callus induction from ES explants was significantly (P < 0.05) lower than that from NES. The highest frequency (97.6%) of callus induction was obtained from NES explants on MS medium containing 3 mg l−1 2,4-D. When the primary calli were maintained at a reduced concentration of 2,4-D (0.5 mg l−1) for 3 weeks, embryogenic calli were formed. The embryogenic calli were then transferred to MS medium supplemented with different concentrations of BA (1–5 mg l−1) and 500 mg l−1 casein hydrolysate (CH) for shoot regeneration. However, the capacity of plant regeneration from ES explant-derived calli was significantly (P < 0.05) higher than that from NES. The best response (81.3%) was observed from ES explant-derived calli on MS medium containing 2 mg l−1 BA. Regenerated plantlets with well-developed root systems were transferred to pots where they grew well, attained maturity and produced fertile seeds. This method could be employed for genetic manipulation studies.  相似文献   

8.
An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to 3 mg l−1, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryo-derived white friable callus were established using half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.  相似文献   

9.
Murashige and Skoog’s (MS) medium was supplemented with supernatant of Halomonas desiderata RE1 in different combinations to observe the impact of bacterial auxin on in vitro growth of Brassica oleracea L. Three groups of combinations MS + BS (Bacterial supernatant), MS + BS + 10% CW (coconut water) and MS + BS + 4 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) were considered. Different amounts of BS used in each combination were 50, 100, 150 and 200 μl in 5 ml MS medium. Media combinations inoculated with seeds, internodal explants and callus of B. oleracea L. were incubated in a growth chamber at 25 ± 1°C and exposed to 16-h cool fluorescent light. Seeds inoculated on MS + BS and MS + BS + 10% CW, shoot elongation was observed over control whereas this response was suppressed in 2,4-D-containing media. In explants inoculated on MS + BS, MS + BS + 10% CW and MS + BS + 4 mg l−1 2,4-D different responses such as callus induction, adventitious shoot induction and hypertrophy were observed at different supernatant treatments. In callus inoculation, callus proliferation was observed in most of the treatments at different media combinations.  相似文献   

10.
Summary This study was conducted to establish and optimize a regeneration system for adapted U.S. rice genotypes including three commercial rice cultivars (LaGrue, Katy, and Alan) and two Arkansas breeding lines. Factors evaluated in the study were genotype, sugar type, and phytohormone concentration. The system consisted of two phases, callus induction and plant regeneration. In the callus induction phase, mature caryopses were cultured on MS medium containing either 1% sucrose combined with 3% sorbitol or 4% sucrose alone, and 0.5 to 4 mg·L−1 (2.26 to 18.10 μM) 2,4-D with or without 0.5mg·L−1) (2.32 μM) kinetin. In the plant regeneration phase, callus was transferred to 2,4-D-free MS medium containing 0 or 2 mg·L−1 (9.29 μM) kinetin combined with 0 or 0.1 mg·L−1 (0.54 μM) NAA. Callus induction commenced within a week, independent of the treatments. Callus growth and plant regeneration, however, were significantly influenced by interactions among experimental factors. Generally, the greatest callus growth and plant regeneration were obtained with 0.5 mg·L−1 (2.26 μM) 2,4-D and decreased with increasing 2,4-D concentrations. Kinetin enhanced callus growth only when combined with 0.5 mg·L−1 (2.26 μM) 2,4-D, and 4% sucrose. Inducing callus on kinetin-containing medium generally enhanced regeneration capacity in the presence of sucrose but not with a sucrose/sorbitol combination. Media containing sucrose alone generally supported more callus proliferation, but the sucrose/sorbitol combination improved regeneration of some cultivars. NAA and kinetin had little effect on regeneration.  相似文献   

11.
Optimal callus induction and plant regeneration were obtained in bread and durum wheat by manipulating the NaCl concentration in the induction medium. Immature embryos from a high regeneration line of spring wheat (Triticum aestivum L.), 'MPB-Bobwhite 26', and an elite durum wheat (Triticum turgidum var. durum L.), 'Mexicali', were cultured in E3 induction medium consisting of Murashige and Skoog (MS) medium, 2.5 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D), 2% sucrose and 0.9% Bacto agar. The treated embryos were transferred to E3 liquid medium supplemented with various levels of 2,4-D and NaCl. Incubation on medium containing 2.5 mg l–1 2,4-D for 45 days produced callus and plant regeneration in 'MPB-Bobwhite 26', but lower callus yield and plant regeneration in 'Mexicali', indicating that 2,4-D alone was not sufficient for callus induction and plant regeneration in this durum variety. Callus yield and regeneration frequencies were higher in 'Mexicali' embryos that were incubated in media containing 2 mg l–1 2,4-D and 2 mg l–1 NaCl. The presence of NaCl in the medium beyond the initiation phase was detrimental to plant regeneration. The use of NaCl in the callus formation could form the basis for improved transformation of durum wheat varieties.  相似文献   

12.
An efficient protocol of callus induction, plant regeneration and long-term maintenance of embryogenic cultures for manilagrass was developed. Callus induction and embryogenic callus formation were influenced by cytokinins and nodal positions. Murashige and Skoog (MS) medium with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.02 mg l−1 kinetin (KT) or 6-benzyladenine (BA) gave the highest frequency for both callus induction and embryogenic callus formation compared with 0.02 mg l−1 thidiazuron (TDZ) or N6-(2-isopenteny) adenine (2iP). The frequency of callus induction of different nodes (from the first to the sixth node) varied from 22.5 to 92.1%, and the embryogenic callus formation frequencies ranged from 13.3 to 25.7%. The highest frequencies of callus induction and embryogenic callus formation (92.1 and 25.7%, respectively) were observed in the fourth node group. During subculture on callus induction and maintenance medium, somatic embryos formed on the surface of the embryogenic callus. On regeneration medium, the regeneration rates of embryogenic callus varied from 96.8 to 100% during the 4-year period of subculture. The results also indicate that preservation of manilagrass callus is stable at low-temperature (4°C) over a period of 11 months. No significant differences were found in the activities of superoxide dismutase (SOD), peroxidase (POD) and proline content of the plants regenerated from the 4-year subcultured callus on different regeneration media.  相似文献   

13.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

14.
Crown and leaf slices of in vitro plantlets of a non-flowering Vetiveria zizanioides from Java were used to induce compact calli and to regenerate plantlets. The influence of different growth regulators (2,4-dichlorophenoxy acetic acid, 6-benzylaminopurine), sucrose concentrations (10–100 g l−1), cultivation in light or dark, and cultivation time on callus induction medium (6 or 12 weeks), on the induction of compact callus and the subsequent regeneration of plantlets was studied. Up to 75% of crown slices cultured on modified Murashige and Skoog medium supplemented with 2.26 μM 2,4-dichlorophenoxy acetic acid, 2.22 μM 6-benzylaminopurine and 75 g l−1 sucrose developed compact callus. For subsequent regeneration of plantlets, callus induction in the light for 6 weeks on the callus induction medium containing 10 g l−1sucrose, and subsequent transfer to the regeneration medium, was the best procedure, regenerating plantlets on around 60% of the crown or leaf slices, with up to 100 plantlets per slice. We have compared the efficiency of the above mentioned procedure with several other methods to regenerate plantlets. Our findings indicate that the procedure developed in this study was best in regenerating plantlets for the used vetiver variant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

16.
Uenaka H  Wada M  Kadota A 《Planta》2005,222(4):623-631
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.  相似文献   

17.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

18.
Chlorophyll a synthesis in the red alga Corallina elongata is controlled by phytochrome and by a specific blue light photoreceptor. Although the estimated photoequilibrium of phytochrome is similar in blue and red light, the amount of chlorophyll accumulated is greater in blue light, which implies the action of cryptochrome, according to the criteria for the specific blue light photoreceptor involvement. The amount of chlorophyll synthesized is greater when the level of photoequilibrium approaches 65% (in blue and red light) than with higher levels (72.7% in white light and 70.8% in green light). The action of phytochrome is demonstrated by the induction of chlorophyll synthesis after red pulses and the reversion after far red pulses. The reversion is not complete but the percentage of reversibility is high (85-90%). The amount of chlorophyll accumulated is greater in darkness after the application of red light pulses than in white light after the same light pulses. The induction of chlorophyll synthesis is greater after red pulses than after continuous red light. The existence of a fast destruction of chlorophyll in continuous light is observed. This destruction is greater in the high photoequilibrium of phytochrome (70-72%). The turnover times and the induction mechanism of chlorophyll synthesis must be very fast. This indicates the existence of a possible rapid adaptation to the change in light quality and intensity in the marine system.  相似文献   

19.
A short-term regeneration system from leaf-base-derived callus of wheat (Triticum aestivum L.) was developed. Embryogenic callus formation and shoot regeneration were achieved from the first basal segments of 3–4-day-old seedlings. Callus formation frequency as well as plantlet regeneration frequency was dependent on the composition of basal medium and the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). MS medium with 2,4-D 4.5–9.0 mol l–1 was optimal for the culture of wheat leaf base. Effects of different combinations of plant growth regulators, which were added in either callus induction medium or shoot regeneration medium, were tested. Adding of BAP in callus induction medium shortened the time of shoot emergence but could not improve the producing of embryogenic calli and green plantlets. Optimal ratio of 2,4-D, BAP and NAA gave similar regeneration frequency to control. Existence of cytokinins in regeneration medium had no effect on increasing the regeneration frequency. The regenerants could grow to normal, fertile plants after they were transferred into soil.  相似文献   

20.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号