首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Constant levels of cellular unsaturated fatty acids were obtained by growing a fatty acid desaturase mutant of Saccharomyces cerevisiae in glucose limited chemostat cultures supplemented with various concentrations of Tween 80. An increase in the frequency of cytoplasmic respiratory incompetent mutants was observed in cultures growing at low cellular levels of unsaturated fatty acids. This effect has been shown to result from an increase in the rate of mutation as the cellular unsaturated fatty acid level is decreased. The majority of induced petite mutants are ?° (contain no mitochondrial DNA).  相似文献   

3.
KD115 (ol1), an unsaturated fatty acid auxotroph of S. cerevisiae, was grown in a semi-synthetic medium supplemented with 3.3 x 10(-4) M palmitoleic (cis 16:1) or palmitelaidic (trans 16:1) acids. The parent strain S288C was studied as a control. The lipid composition (fatty acids, neutral lipids, and phospholipids), respiratory activity (O2 consumption), and ultrastructure were compared in mutant yeast grown with each unsaturated fatty acid supplement. The fatty acid supplement represented 70-80% of the yeast fatty acids. Yeast grown in trans 16:1 contained more squalene, a higher ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC), and had 10-20% of the respiratory activity compared to the same yeast grown in cis 16:1. The mitochondrial morphology of yeast in each growth supplement was notably different. The use of mixtures of cis and trans 16:1 in different proportions revealed that the PE/PC ratio, the squalene content, the respiratory defect, and the mitochondrial morphology were all similarly dependent on the fraction of trans 16:1 in the mixtures. As little as 10-20% of cis 16:1 in the mixture was sufficient to abrogate the physiological effects of trans 16:1 on each of the parameters noted above. The combined effects of high content of trans unsaturated fatty acid and the altered phospholipid composition seem to account for the decrease in lipid fluidity, the defective structure and function of the mitochondrial membrane.  相似文献   

4.
The localization of the mitochondrial elongation activities ('elongases') from Saccharomyces cerevisiae has been investigated. It was shown, using carboxyatractyloside in the incubation mixture, that synthesis of very-long-chain fatty acids probably occurred outside the matrix and, by fractionation experiments, that elongases are membrane-bound enzymes. The solubilization of the outer membrane by digitonin showed that three elongating activities are correlated with a marker of the outer membrane and not with an inner membrane marker. A further partial purification of the outer membrane showed that elongases are present in the outer membrane of mitochondria.  相似文献   

5.
6.
Unsaturated fatty acid mutants of Saccharomyces cerevisiae   总被引:21,自引:12,他引:9  
Resnick, Michael A. (University of California, Berkeley), and Robert K. Mortimer. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J. Bacteriol. 92:597-600. 1966.-The wild type of the yeast Saccharomyces cerevisiae does not require fatty acids or sterols for growth. Two types of lipid nutritional mutants have been induced in this organism. One of these classes of mutants requires an unsaturated fatty acid and is associated with a locus on chromosome VII. The other class of mutants needs either an unsaturated fatty acid or ergosterol for growth. Experiments involving identification and characterization of these mutants are presented.  相似文献   

7.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.  相似文献   

8.
9.
The ability of purified mitochondria isolated from S. cerevisiae to synthesize fatty acids and especially very long chain fatty acids (VLCFA) has been investigated. The VLCFA synthesis requires malonyl-CoA as the C2 unit donor and NADPH as the reducing agent. Moreover the yeast mitochondrial elongase is able to accept either exogenous long chain fatty acyl-CoAs as substrates or elongate endogenous substrates. In the latter case, ATP is required for full activity. Besides this important VLCFA formation, the mitochondria from S. cerevisiae were also able to synthesize C16 and C18.  相似文献   

10.
The Saccharomyces cerevisiae gene, HFA1, encodes a >250-kDa protein, which is required for mitochondrial function. Hfa1p exhibits 72% overall sequence similarity (54% identity) to ACC1-encoded yeast cytoplasmic acetyl-CoA carboxylase. Nevertheless, HFA1 and ACC1 functions are not overlapping because mutants of the two genes have different phenotypes and do not complement each other. Whereas ACC1 is involved in cytoplasmic fatty acid synthesis, the phenotype of hfa1Delta disruptants resembles that of mitochondrial fatty-acid synthase mutants. They fail to grow on lactate or glycerol, and the mitochondrial cofactor, lipoic acid, is reduced to <10% of its normal cellular concentration. Other than Acc1p, the N-terminal sequence of Hfa1p comprises a canonical mitochondrial targeting signal together with a matrix protease cleavage site. Accordingly, the HFA1-encoded protein was specifically assigned by Western blotting of appropriate cell fractions to the mitochondrial compartment. Removal of the mitochondrial targeting sequence abolished the competence of HFA1 DNA to complement hfal null mutants. Conversely and in contrast to the intact HFA1 sequence, the signal sequence-free HFA1 gene complemented the mutational loss of cytoplasmic acetyl-CoA carboxylase. Expression of HFA1 under the control of the ACC1 promoter restored cellular ACC activity in ACC1-defective yeast mutants to wild type levels. From this finding, it is concluded that HFA1 encodes a specific mitochondrial acetyl-CoA carboxylase providing malonyl-CoA for intraorganellar fatty acid and, in particular, lipoic acid synthesis.  相似文献   

11.
12.
13.
Halofenate-free acid (HFA) inhibited the growth of Saccharomyces cerevisiae by 50% at a concentration of 0.34 mm. This inhibitory effect was prevented by addition of either oleate or acetate, but not by pyruvate. When cell growth was supported by oleate, HFA inhibited the incorporation of radioactive carbon from glucose-U-(14)C or pyruvate-2-(14)C into fatty acids and sterols. The incorporation of radioactive carbon into fatty acids and sterols from acetate-2-(14)C was unaffected by the compound. When cell growth was supported by either oleate or acetate, HFA inhibited the conversion of pyruvate-1-(14)C to (14)CO(2). These results suggest that HFA inhibits the conversion of pyruvate to acetate in yeast. Partially purified yeast pyruvate dehydrogenase was inhibited 50% by 5.5 mm HFA; however, the concentration required for 50% inhibition was considerably reduced when the enzyme was preincubated with the compound at room temperature. In a similar manner, the hypolipidemic agent clofibrate-free acid inhibited the growth of yeast by 50% at 3.0 mm. This inhibition was also prevented by acetate and not by pyruvate. In addition, clofibrate-free acid inhibited partially purified pyruvate dehydrogenase by 50% at a concentration of 37.0 mm.  相似文献   

14.
15.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

16.
17.
Regulation of long chain unsaturated fatty acid synthesis in yeast   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Fatty acid synthetase from Saccharomyces cerevisiae is a multifunctional enzyme which catalyzes the synthesis of long chain fatty acids from acetyl- and malonyl-CoA. The enzyme is composed of two nonidentical subunits, alpha (Mr = 212,000) and beta (Mr = 203,000), which are coded for by two unlinked genes FAS2 and FAS1, respectively. Individual yeast strains containing mutations in either of the FAS genes were transformed with a bank of yeast DNA sequences in the vector YEp13. Plasmids YEpFAS1 and YEpFAS2 were selected by their ability to complement the fas1 or fas2 mutations, respectively. Additionally, we utilized an immunologic screening of a second yeast DNA bank and selected two clones 33F1 and 102B5 which produce antigenically reactive material to anti-yeast fatty acid synthetase antibodies. Through Southern hybridization experiments and restriction endonuclease mapping, a region of 5.3 kilobase pairs of 33F1 was shown to be homologous with YEpFAS1, and a span of 3.4 kilobase pairs of 102B5 was homologous with YEpFAS2. These experiments identify the yeast DNA sequences cloned into 33F1 as originating from the FAS1 gene and those DNA sequences in 102B5, from the FAS2 gene.  相似文献   

20.
Tannic acid inhibited the growth of the yeast Saccharomyces cerevisiae. Growth medium supplementation with more nitrogen or metal ions showed that only iron ions could restore the maximal growth rate of S. cerevisiae. Tannic acid resistant mutants were previously isolated by screening for tannic acid resistance and were all cytoplasmic petite mutants. While the wild type was very sensitive to iron deprivation conditions when grown in aerobic conditions, the mutants, whether grown aerobically or anaerobically, showed the same growth rate under iron-limited conditions as under iron-repleted conditions. Also, the wild type grown anaerobically was not affected by iron-limited conditions. Cytoplasmic petite mutants obtained by ethidium bromide mutagenesis behaved like the other mutants. During iron limitation, the wild type showed a reduced oxygen uptake rate. Maximal growth rate of the wild type in iron-limited conditions could be restored by the addition to the media of unsaturated fatty acids and sterol. Iron deprivation caused by tannic acid may thus affect the synthesis of a functional respiratory chain as well as the synthesis of unsaturated fatty acids and (or) sterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号