首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gender Medicine》2012,9(2):68-75.e3
BackgroundSex is suggested to be an important determinant of ischemic stroke risk factors, etiology, and outcome. However, the basis for this remains unclear. The Y chromosome is unique in males. Genes expressed in males on the Y chromosome that are associated with stroke may be important genetic contributors to the unique features of males with ischemic stroke, which would be helpful for explaining sex differences observed between men and women.ObjectiveWe compared Y chromosome gene expression in males with ischemic stroke and male controls.MethodsBlood samples were obtained from 40 male patients ≤3, 5, and 24 hours after ischemic stroke and from 41 male controls (July 2003–April 2007). RNA was isolated from blood and was processed using Affymetrix Human U133 Plus 2.0 expression arrays (Affymetrix Inc., Santa Clara, California). Y chromosome genes differentially expressed between male patients with stroke and male control subjects were identified using an ANCOVA adjusted for age and batch. A P < 0.05 and a fold change >1.2 were considered significant.ResultsSeven genes on the Y chromosome were differentially expressed in males with ischemic stroke compared with controls. Five of these genes (VAMP7, CSF2RA, SPRY3, DHRSX, and PLCXD1) are located on pseudoautosomal regions of the human Y chromosome. The other 2 genes (EIF1AY and DDX3Y) are located on the nonrecombining region of the human Y chromosome. The identified genes were associated with immunology, RNA metabolism, vesicle fusion, and angiogenesis.ConclusionsSpecific genes on the Y chromosome are differentially expressed in blood after ischemic stroke. These genes provide insight into potential molecular contributors to sex differences in ischemic stroke.  相似文献   

2.
A T Branco  Y Tao  D L Hartl  B Lemos 《Heredity》2013,111(1):8-15
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.  相似文献   

3.
The ultrastructure of antennal sensilla was investigated in males and females of 5 European Yponomeuta species. Three types of olfactory sensilla could be distinguished, i.e. sensilla trichodea, sensilla basiconica, and sensilla coeloconica. Sexual dimorphism in the number of cells innervating sensilla trichodea could be established in 3 species. Most of these sensilla in males of Y. vigintipunctatus, Y. rorellus, and Y. cagnagellus are associated with 3 sensory cells, whereas in females of these species these sensilla contain 2 sensory cells. In both males and females of Y. padeltus and Y. malinellus, the great majority of the sensilla trichodea is innervated by 3 cells. So-called sensilla chaetica type 1 show features typical of a combined mechano/contact-chemoreceptor. No structures indicating a sensory function were found in sensilla chaetica type 11. Sensilla styloconica contain 3 cells, the dendritic outer segment of one being lamellated; most likely, these cells have a thermo- and hygroreceptive function. The findings concerning the olfactory sensilla are discussed in the context of olfactory communication and reproductive isolation in European Yponomeuta.  相似文献   

4.
The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome.  相似文献   

5.
Martini M  Sica M  Gotti S  Eva C  Panzica GC 《Peptides》2011,32(6):1330-1334
In the present study we used a transgenic mouse model, carrying the neuropeptide Y (NPY) Y1 receptor gene promoter linked to the LacZ reporter gene (Y1R/LacZ mice) to test the hypothesis of its up-regulation by gonadal hormones. Y1 receptor gene expression was detected by means of histochemical procedures and quantitative image analysis in the paraventricular nucleus, arcuate nucleus, medial preoptic nucleus, ventromedial nucleus and bed nucleus of stria terminalis of two-month-old female mice at different stages of estrous cycle. Qualitative and quantitative analyses showed that Y1R/LacZ transgene expression was higher in the paraventricular, arcuate, and ventromedial nuclei of proestrus mice as compared to mice in the other stages of the estrous cycle. In addition, we performed a comparison with a group of sexually active males. In this comparison a significant difference (less in males) was observed between males and proestrus females in the same nuclei. In conclusion, these data indicate that fluctuations in circulating levels of gonadal hormones, depending by estrous cycle, are paralleled by changes in the expression of NPY Y1 receptor in the hypothalamic nuclei involved in the control of both energy balance and reproduction.  相似文献   

6.
7.
8.
Xq28 duplications encompassing the methyl CpG binding protein 2 (MECP2) in males exhibit a distinct phenotype, including developmental delay, facial dysmorphism, muscular hypotonia, intellectual disability, poor or absent speech, recurrent infections and early death. The vast majority of affected males inherit the MECP2 duplication from their usually asymptomatic carrier mothers. Only a few cases with Xq28 duplication originating from de novo unbalanced X/Y translocation have been reported and the paternal origin of the aberration has only been validated in three males in the related literature. Here we present a karyotypically normal male with features characteristic of the MECP2 duplication syndrome. The genome-wide SNP genotyping shows a de novo 2.26-Mb duplication from Xq28 to the terminus. The genotypes of the SNPs within the duplicated region indicated a paternal origin. Furthermore, the results of fluorescence in situ hybridization (FISH) indicated a novel Xq:Yp translocation, characterized as der(Y)t(Y;X)(p11.32;q28), which suggests an aberrant that occurred during spermatogenesis. The phenotype is compared to the previously reported cases with Xq28 duplication originated from an unbalanced X/Y translocation, and there was no specific part of the phenotype that could be contributed to the origin of parental imbalances. This report further highlights the capacity of high-molecular cytogenetic methods, such as SNP array and FISH, in the identification of submicroscopic rearrangement, structural configuration and parental origin of aberrant while in the evaluation of children with idiopathic developmental delay and intellectual disability.  相似文献   

9.
10.
The male-specific regions of the Y chromosome (MSY) of the human and the chimpanzee (Pan troglodytes) are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH) of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y)—a so-far never-described variation of a species'' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee''s closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species'' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes), since ovulation in this species is concealed by the prolonged anogenital swelling, and because female bonobos can occupy high-ranking positions in the group and are thus able to determine mate choice more freely.  相似文献   

11.
X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.  相似文献   

12.
Pf62-Y and Pf62-X is a pair of allelic Y chromosome-linked and X chromosome-linked markers, and have been used to identify YY super-males, XY males and XX females for commercial production of all-male populations in yellow catfish (Pelteobagrus fulvidraco). However, the SCAR primers used previously have only two nucleotide difference, which restricts the wide utility because of nucleotide polymorphism. In this study, a continuous 8102 bp Pf62-Y sequence and a 5362 bp Pf62-X sequence have been cloned by genome walking, and significant genetic differentiation has been revealed between the corresponding X and Y chromosome allele sequences. Moreover, three pairs of primers were designed to efficiently identify YY super-males, XY males and XX females in an artificial breeding population, and to distinguish XY males and XX females in various wild populations. Together, the three new sex-specific genetic markers develop a highly stable and efficient method for genetic sex identification and sex control application in sustainable aquaculture of all-male yellow catfish.  相似文献   

13.
Evolutionists have debated whether population-genetic parameters, such as effective population size and migration rate, differ between males and females. In humans, most analyses of this problem have focused on the Y chromosome and the mitochondrial genome, while the X chromosome has largely been omitted from the discussion. Past studies have compared FST values for the Y chromosome and mitochondrion under a model with migration rates that differ between the sexes but with equal male and female population sizes. In this study we investigate rates of coalescence for X-linked and autosomal lineages in an island model with different population sizes and migration rates for males and females, obtaining the mean time to coalescence for pairs of lineages from the same deme and for pairs of lineages from different demes. We apply our results to microsatellite data from the Human Genome Diversity Panel, and we examine the male and female migration rates implied by observed FST values.  相似文献   

14.
The experimental population genetics of Y-chromosome drive in Drosophila melanogaster is approximated by studying the behavior of T(Y;2),SD lines. These exhibit "pseudo-Y" drive through the effective coupling of the Y chromosome to the second chromosome meiotic drive locus, Segregation distorter (SD). T(Y;2),SD males consequently produce only male offspring. When such lines are allowed to compete against structurally normal SD+ flies in population cages, T(Y;2),SD males increase in frequency according to the dynamics of a simple haploid selection model until the cage population is eliminated as a result of a deficiency in the number of adult females. Cage population extinction generally occurs within about seven generations.—Several conclusions can be drawn from these competition cage studies:

(1) Fitness estimates for the T(Y;2),SD lines (relative to SD+ ) are generally in the range of 2–4, and these values are corroborated by independent estimates derived from studies of migration-selection equilibrium.

(2) Fitness estimates are unaffected by cage replication, sample time, or the starting frequency of T(Y;2),SD males, indicating that data from diverse cages can be legitimately pooled to give an overall fitness estimate.

(3) Partitioning of the T(Y;2),SD fitnesses into components of viability, fertility, and frequency of alternate segregation (Y + SD from X + SD+) suggests that most of the T(Y;2),SD advantage derives from the latter two components. Improvements in the system might involve increasing both the viability and the alternate segregation to increase the total fitness.

While pseudo-Y drive operates quite effectively against laboratory stocks, it is less successful in eliminating wild-type populations which are already segregating for suppressors of SD action. This observation suggests that further studies into the origin and rate of accumulation of suppressors of meiotic drive are needed before an overall assessment can be made of the potential of Y-chromosome drive as a tool for population control.

  相似文献   

15.
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.  相似文献   

16.
Eight temperature-sensitive (ts) male sterile mutations have been induced by ethyl methanesulfonate treatment of Y chromosomes derived from a selected temperature-resistant Amherst wild-type stock of Drosophila melanogaster. Males carrying such mutated Y chromosomes (Yts) are sterile when raised at 29°C but fertile when reared at 22°C. Complementation tests of the mutants with Y chromosome fragments, deletions, and inter se localized all eight to the long arm of the chromosome in four different complementation groups.When Yts-bearing males, reared to adulthood at 22°C, were subjected to a 48-hr regimen at 29°C and mated to fresh virgin females daily, a significant reduction in fertility resulted 5 days after initiation of 29°C treatments. This period of sterility was transient (48–72-hr duration) and corresponded to a temperature-sensitive period (TSP) of spermatogenesis during the primary spermatocyte stage. A more precise definition of the TSP utilized exposure of subadult males to 29°C at selected developmental periods during which only certain germ cell stages are present. Upon eclosion adult males were subjected to a similar schedule of consecutive matings of 12-hr duration in order to detect any delay in the appearance of fertility. Different ts males could be distinguished by the resultant pattern of sterility, and the TSP of different mutations thus localized to either primary spermatocyte or immediately post-meiotic stage.Associated with Yts-mediated sterility, spermiogenesis is defective at restrictive temperature as evidenced by the production of nonmotile sperm and a failure to transfer such sperm to the female during copulation. In addition, electron microscopy detected a variety of ultrastructural abnormalities, including defects of axoneme formation, irregularities of Nebenkern derivative development, and failures of separation from the syncitial state or mature cyst with subsequent degeneration.  相似文献   

17.
Haploid and dihaploid female and rare dihaploid male plants were produced inMelandrium album throughin vitro induced androgenesis. In the seed progeny obtained from cross-hybridization between dihaploid androgenic males (supermales) and standard females only male plants were observed. The microspores containing Y chromosome gave rise to supermales.  相似文献   

18.
Gene drive systems provide novel opportunities for insect population suppression by driving genes that confer a fitness cost into pest or disease vector populations; however regulatory issues arise when genes are capable of spreading across international borders. Gene drive systems displaying threshold properties provide a solution since they can be confined to local populations and eliminated through dilution with wild-types. We propose a novel, threshold-dependent gene drive system, Medusa, capable of inducing a local and reversible population crash. Medusa consists of four components - two on the X chromosome, and two on the Y chromosome. A maternally-expressed, X-linked toxin and a zygotically-expressed, Y-linked antidote results in suppression of the female population and selection for the presence of the transgene-bearing Y because only male offspring of Medusa-bearing females are protected from the effects of the toxin. At the same time, the combination of a zygotically-expressed, Y-linked toxin and a zygotically-expressed, X-linked antidote selects for the transgene-bearing X in the presence of the transgene-bearing Y. Together these chromosomes create a balanced lethal system that spreads while selecting against females when present above a certain threshold frequency. Simple population dynamic models show that an all-male release of Medusa males, carried out over six generations, is expected to induce a population crash within 12 generations for modest release sizes on the order of the wild population size. Re-invasion of non-transgenic insects into a suppressed population can result in a population rebound; however this can be prevented through regular releases of modest numbers of Medusa males. Finally, we outline how Medusa could be engineered with currently available molecular tools.  相似文献   

19.
Intraspecific chromosomal variability is common among New World primates. A polymorphism has been described among male Callimico goeldiiin which the Y chromosome is translocated to an autosome. Consequently, males may have a chromosome number of 47 or 48. We describe the results of karyotypic analyses on 40 captive male C. goeldii.Thirty- nine of them had a diploid chromosome number of 47, including the Y- autosome translocation. The remaining male had 48 chromosomes;however, he too carried the translocation along with two X chromosomes. The reported Y- chromosome translocation in Callimico goeldiiappears not to be a polymorphism but, instead, a feature characteristic of all males in the population.  相似文献   

20.
采用常规空气干燥法制片,对寄生于黄鳝(Monopterus albus)体腔内的胃瘤线虫(Eustrongylidesignotus)染色体核型进行分析。结果表明:胃瘤线虫体细胞有12条染色体,为二倍体,核型公式为2n=12=10 m+2 sm。由5对常染色体和1对性染色体组成,性别决定模式为XX-XY,其中X、Y和1~4号染色体都为中着丝粒染色体,5号为亚中着丝粒染色体。每对染色体都有特定的G-带带型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号