首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The registration of one of the world's first biological control agents for a plant pathogen, in January 1998, after 30 years of field use, is discussed in relation to its approval under the UK Control of Pesticides Regulations 1986. The control agent, Phlebiopsis gigantea (formerly known as Peniophora gigantea), is a common wood-rotting basidiomycete which is applied to the freshly cut surfaces of pine stumps to prevent their colonization by the pathogenic rootrotting fungus Heterobasidion annosum . Unlike many other biocontrol agents, P. gigantea is not a biocide that kills the target organism. Rather, it competes for resources that the pathogen would otherwise use, providing an extension to a naturally occurring process. Experience in securing approval is reviewed, with special reference to the identity of the organism and its natural distribution, and to assessments of the risk its use might pose in the environment. It is suggested that before the formal process of applying for approval of a biocontrol agent begins, there should be procedures for agreeing precise data requirements. These should be based on the type of crop to be treated and the mode of operation and characteristics of the biocontrol organism. This would streamline the registration process.  相似文献   

2.
The research areas were located in the Pisz Forest District, northeast Poland, in 10‐year‐old Scots pine (Pinus sylvestris L.) plantations, established in 2004 on a clear‐cut area. Reforestation was performed without a biological treatment against root pathogens, despite the presence of Heterobasidion annosum and Armillaria ostoyae in roots and stumps of trees growing previously. The aim of this research was to evaluate how thinning and treatment with the biological control agent Rotstop influences bacterial and fungal communities within roots and stumps. Twelve months after thinning, samples were collected from five stumps in each of two seasons, autumn and spring, from stands on two types of site, one previously forested and one agricultural (20 stumps in total). Wood samples were cultured on agar media, and (i) fungi in the upper part of the stump and (ii) in roots and (iii) bacteria in roots were genetically identified. Sequences were genetically identified by comparing sequences with records held in the GenBank database. We found great differences in the frequency of both fungi and bacteria in roots: they were more frequent (i) in healthy stumps compared to stumps infected with pathogens (H. annosum and A. ostoyae), (ii) in postagricultural soil than in forest soil and (iii) after spring rather than autumn biological treatment. The introduced species Phlebiopsis gigantea was only identified in the parts of the stumps which were above ground level. The bacterium Paenibacillus pini was associated with the presence of H. annosum infecting the stumps from the roots side. In areas seriously threatened by root pathogens, biological treatment can play only a limited role. It can spread to the upper part and impede the production of fruitbodies; however, it has no impact on the development of pathogens in deeper root areas.  相似文献   

3.
To control the infections by root rot fungi Heterobasidion spp., surfaces of freshly cut Norway spruce stumps are covered either by a biological (Rotstop; spore suspension of competitive saprotrophic fungus Phlebiopsis gigantea), or by a chemical (35% aqueous solution of urea) compound. In Fennoscandia, Rotstop and urea are applied, respectively, on 47,000 ha and on 2000 ha of forestland each year. The aim of this work was to assess the impact of biological and chemical control on biodiversity in communities of non-target fungi in freshly cut (7-week-old) stumps. Isolation of fungi to pure culture was accomplished from 402 wood samples taken from 63 stumps, 21 treated with each of the compounds and 21 untreated. The isolations yielded 368 distinct fungal strains representing 47 species. Stump treatment led to decrease of species richness both in Rotstop-treated (by 15%) and in urea-treated (by 19%) stumps. Nevertheless, the stumps subjected to the biological compound were colonized mainly by the same fungi that occurred naturally in untreated stumps (Sorensen similarity indices; SS=0.69; SN=0.68). By contrast, chemical treatment strongly promoted stump colonization by Ascomycetes and Deuteromycetes, led to significant decrease of Zygomycetes, and almost completely eliminated Basidiomycetes (including Heterobasidion spp.). Thus, resemblance to a natural community was low (SS=0.45; SN=0.34). Rotstop treatment decreased significantly the extent of stump colonization by Heterobasidion spp., and increased that of P. gigantea. All strains of the latter were genetically identical among themselves and to the Rotstop strain. The mechanisms of biological and chemical control, and biodiversity aspects are discussed.  相似文献   

4.
Phlebiopsis gigantea (=Phanerochaete gigantea) is a white rot fungus that rapidly colonizes cut stumps, stems, and branches of pine. Two laboratory and several field studies showed that inoculation of red pine logs, Pinus resinosa, with P. gigantea reduced the pitch content of wood, facilitated bark removal, modified wood cells, and controlled detrimental sapstain. Isolations from inoculated logs revealed up to 100 and 80% colonization of the sapwood by P. gigantea after 8 weeks in the field and 32 days in the laboratory, respectively. Logs colonized by P. gigantea in both the laboratory and field showed a 9 to 71% reduction in pitch content, as well as a significant enhancement of bark removal. Examination with Simons' stain of refined wood fibers from inoculated logs revealed an increase in cell wall porosity. Blue stain fungi that cause dark discoloration of the sapwood were inhibited by inoculation with P. gigantea. These studies demonstrate that biological processing of logs with P. gigantea can result in substantial benefits to the pulp and papermaking process.  相似文献   

5.
The tree pathogenic fungi Heterobasidion annosum s.s. and Heterobasidion parviporum cause root and butt rot in Norway spruce (Picea abies) and produce serious economic losses to the forest sector in Europe. We experimentally studied inter- and intraspecific differences between H. parviporum and H. annosum s.s. in the way they infect stumps and spread into neighbouring trees. Eleven H. parviporum and nine H. annosum s.s. isolates were artificially inoculated on stumps of two spruce stands after first thinning. After 15 years, the same isolates were reisolated from neighbouring trees. Heterobasidion parviporum spread more frequently from the inoculated stumps to the neighbouring trees than H. annosum s.s. The surroundings of H. annosum s.s. stumps that did not spread were often colonized by H. parviporum. Heterobasidion annosum s.s. spread was restricted mainly to the areas of the plot where no other Heterobasidion genotypes had been inoculated. In such cases, H. annosum s.s. tended to develop into bigger genets than H. parviporum. The probability of stump-to-tree spread of H. parviporum depended on the diameter of the stumps, suggesting that H. parviporum spread may relate to the presence of heartwood. Both H. parviporum and H. annosum s.s. proved to be strong pathogens on Norway spruce; however, when competing for the same trees, H. parviporum seemed capable of excluding H. annosum s.s. from the stand.  相似文献   

6.
The Heterobasidion annosum species complex is a widely distributed group of fungal conifer pathogens causing root and butt rots. We studied the key processes of Heterobasidion epidemiology by compiling models that rely on biological processes. Models were included in the mechanistic model with stochastic elements, Hmodel, simulating the fungal dynamics in even-aged Norway spruce stands. The results from the modelling and stand-level simulations indicated that primary infections are affected by the stump size and spore deposition. In addition, we found that Heterobasidion dynamics at the scale of the stand are driven by several infections in large stumps, rather than by numerous infections in small stumps. We assessed the need for quantitative results in Heterobasidion biology, especially in the spread mechanisms, to support the development of complex mechanistic models.  相似文献   

7.
Polymerase chain reaction-amplified and sequenced isolates of Antrodia gossypium, Phlebiopsis gigantea and Heterobasidion parviporum from decaying Norway spruce wood blocks after three and six months, which exhibited linear growth, were investigated. P. gigantea strains showed the fastest growth, whereas A. gossypium growth was five times slower. The differences between the mean daily increment of A. gossypium and the other examined isolates (except Hp2) were statistically significant. There were also significant differences in wood decay between densities over time. These results were confirmed by the decay acceleration index (DAI) and decay activity index, which were positively correlated with wood density regardless of the fungus species. The registered P. gigantea strains (Rotstop and PG Suspension) exhibited a strong decomposition ability (28% after six months); the weight loss caused by A. gossypium after six months of decay (15.2%) was similar to the results of P. gigantea (GB) after just three months (13.2%). All tested H. parviporum isolates showed rather rapid growth and equally strong wood decay (20–25%) compared to those of P. gigantea. DAI showed that A. gossypium may significantly contribute to wood decomposition over time, particularly in less dense wood samples. The use of both saprotrophs as biological agents against root pathogens is discussed.  相似文献   

8.
Scots pine (Pinus sylvestris) secretes a number of small, highly-related, disulfide-rich proteins (Sp-AMPs) in response to challenges with fungal pathogens such as Heterobasidion annosum, although their biological role has been unknown. Here, we examined the expression patterns of these genes, as well as the structure and function of the encoded proteins. Northern blots and quantitative real time PCR showed increased levels of expression that are sustained during the interactions of host trees with pathogens, but not non-pathogens, consistent with a function in conifer tree defenses. Furthermore, the genes were up-regulated after treatment with salicylic acid and an ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid, but neither methyl jasmonate nor H(2)O(2) induced expression, indicating that Sp-AMP gene expression is independent of the jasmonic acid signaling pathways. The cDNA encoding one of the proteins was cloned and expressed in Pichia pastoris. The purified protein had antifungal activity against H. annosum, and caused morphological changes in its hyphae and spores. It was directly shown to bind soluble and insoluble β-(1,3)-glucans, specifically and with high affinity. Furthermore, addition of exogenous glucan is linked to higher levels of Sp-AMP expression in the conifer. Homology modeling and sequence comparisons suggest that a conserved patch on the surface of the globular Sp-AMP is a carbohydrate-binding site that can accommodate approximately four sugar units. We conclude that these proteins belong to a new family of antimicrobial proteins (PR-19) that are likely to act by binding the glucans that are a major component of fungal cell walls.  相似文献   

9.
10.
The necrotrophic pathogen Heterobasidion annosum sensu lato (Fr.) Bref. causes severe root rot on coniferous trees in the boreal and temperate forests. The annual economic losses caused by this fungus in Europe are estimated to at least 790 million €. In managed forests, the major route of infection is via stump surfaces from which the H. annosum s.l. grows through the roots and attacks adjacent healthy trees. A biocontrol method to reduce H. annosum s.l. infection is to apply the wood degrading fungus Phlebiopsis gigantea in a spore solution (Rotstop) directly on the freshly cut stumps immediately after cutting. We investigated the potential risk for a build-up in the capacity of H. annosum s.l. to resist overgrowth by P. gigantea. Wood blocks of Picea abies, precolonized with the two fungal species, were juxtaposed on top of agar and the overgrowth of the P. gigantea strain (Rotstop) on the H. annosum s.l. was measured periodically. We found a natural variation in Heterobasidion parviporum to resist overgrowth by P. gigantea. There was no difference between homo- and heterokaryotic strains. In a mapping population of 91 progenies from a H. annosum hybrid strain we were able to identify one quantitative trait locus (QTL) which controls the examined resistance capacity. We estimated the broad sense heritability to 0.336 for the capacity to resist the P. gigantea overgrowth. We conclude that there exists a theoretical risk for resistance build-up in the H. annosum s.l. population towards its biological control agent P. gigantea.  相似文献   

11.
The large pine weevil ( Hylobius abietis L.) is one of the most important pests in coniferous reforestation in Europe. Larvae develop in the stumps of recently felled trees; the emerging adults feed on the bark of seedlings and may kill them. The ability of the entomopathogenic nematodes Heterorhabditis megidis and Steinernema carpocapsae to invade pine weevil larvae in Sitka spruce ( Picea sitchensis ) buried in moist sand was evaluated. Overall, four times as many H. megidis as S. carpocapsae invaded pine weevil larvae. The two species of nematode differed in their response to timber condition. The number of S. carpocapsae invading pine weevil larvae was twice as high in billets inoculated with the wood-rotting fungus Phlebiopsis gigantea as in fresh timber, while the number of H. megidis invading was reduced by 25%. Invasion into non-feeding insects (larvae of the wax moth Galleria mellonella ) contained in timber disks was also affected by timber quality, indicating that nematode behaviour was affected directly by the physical or chemical condition of the timber, though trophically mediated effects may also have been involved.  相似文献   

12.
The molecular factors regulating interspecific interaction between the saprotrophic biocontrol fungus Phlebiopsis gigantea and the conifer pathogen Heterobasidion parviporum were investigated. We constructed cDNA libraries and used expressed sequence tag analysis for the identification and characterization of genes expressed during the self and nonself-hyphal interaction. cDNA clones from either the pathogen or biocontrol agent were arrayed on nylon membrane filters and differentially screened with cDNA probes made from mycelia forming the barrage zone during nonself-interactions, mycelia growing outside the barrage zones or monocultures. BlastX analysis of the differentially expressed clones led to the identification of genes with diverse functions, including those with potential as virulence factors, such as hydrophobins. Because of the high sequence conservation (r2 = 0.81) between P. gigantea and H. parviporum, a selected number of genes from either fungus were used to monitor the expression profile under varying interaction conditions by virtual northern blot. The results are discussed with respect to the potential role of the induced genes during the nonself-competitive interaction for space and nutrients between P. gigantea and H. parviporum.  相似文献   

13.
Sixty-four wild heterokaryotic isolates of Phlebiopsis gigantea were analysed for asexual spore production, growth rate and competitive ability against Heterobasidion in vitro , as well as growth rate in Norway spruce wood. These P. gigantea traits were considered important for controlling infection of Norway spruce stumps by spores of Heterobasidion spp. Ten most promising P. gigantea isolates were crossed with each other and 172 F1 progeny heterokaryons were analysed for the above-mentioned traits. Thirteen most promising progeny heterokaryons were selected and their biocontrol ability against infection by Heterobasidion was compared with the parental isolates in stem pieces of Norway spruce. The results indicated that the progeny strains had generally better traits and control efficacy than the parental strains. The genetic effects accounted for a part of the variations between progeny and parental strains. This further suggests that there is a potential to improve the biocontrol properties of P. gigantea through breeding.  相似文献   

14.
在四川北部九寨沟和黄龙保护区的云杉、松树和铁杉上发现异担子菌 ,并从 6号标本中分离到 73个单孢菌株。在每个标本中随机选取 2个菌株分别与欧洲的原始多年异担子菌、小孔异担子菌和冷杉异担子菌的单孢菌株进行融合性交配。试验表明 ,这 6号标本都是小孔异担子菌。四川的菌株与欧洲的原始多年异担子菌交配不融合 ,而与欧洲的小孔异担子菌完全融合 ,并在交配后的菌落中形成锁状联合 ,且在交配的菌落中不产生拮抗线。虽然四川的菌株与欧洲的冷杉异担子菌有较高的融合性 ,但这些交配大部分为单项交配 ,即只在四川一侧的菌落中产生锁状联合 ,而且在交配的菌落中多数产生拮抗线。研究样品全部采自天然林 ,小孔异担子菌在四川经营林分中的致病性还有待进一步调查。  相似文献   

15.
The pattern of gene expression of the basidiomycete Heterobasidion annosum, causal agent of the root rot of conifers, was analysed during its interaction with pine roots. A complementary DNA (cDNA) library was constructed from total RNA extracted from H. annosum mycelia challenged with Scots pine seedling roots for 6 and 72h. Single pass sequencing of 1148 randomly selected cDNA clones resulted in 923 expressed sequence tags (ESTs). Contig analysis and sequence comparisons identified 318 unigene sequences, of which 62 were repeatedly sampled. A putative cellular function was assigned to 223 contigs (70%) that showed a moderate to high homology to protein sequences from public databases. Variations in expression levels during the infection process were monitored on a set of 96 unigenes by reverse northern using dot hybridisation. Seven unigenes (7%) were shown to be either up (4) or down (3) regulated during interaction of the fungus with pine roots. Fungal genes differentially expressed during contact with roots include genes encoding mitochondrial proteins, a cytochrome P450 and a vacuolar ATP synthase.  相似文献   

16.
萧氏松茎象危害与松树松脂量关系研究初报   总被引:6,自引:1,他引:5  
萧氏松茎象HylobitelusxiaoiZhang是近年来暴发性松树害虫 ,主要危害 3种松树 :湿地松 (PinuselliottiiEngelm)、火炬松 (P .taeda)、马尾松 (P .massoniaanaLamb) ,其中以湿地松受害最为严重。为明确萧氏松茎象的危害与松脂流量的关系 ,作者对萧氏松茎象危害前后 3种松树 (湿地松、马尾松、火炬松 )松脂流量变化进行了研究。结果显示 ,在松树受害植株和未受害植株间松脂总流量间存在一定差异 ,其中以马尾松松脂流量变化最大 ,对受害株和未受害株松脂流量t-测验 ,差异达到显著水平 ;而湿地松和火炬松松脂总流量在受害植株和未受害植株间没有显著差异。对上述 3种松树松脂流量随时序动态变化的分析显示 ,松脂流量在 1年中以 5月到 6月之间为松脂流量高峰期 ,此后逐渐下降 ,到 3月中旬以后松脂流量又开始上升。就松脂流量时序动态而言 ,萧氏松茎象为害对马尾松松脂流量影响最大 ,对其它2个松树影响不明显。另外 ,不同松树树种在松脂流量及其时序动态上也存在一定差异 ,其中以马尾松脂流量较高。  相似文献   

17.
18.
The infection-related expression of a Heterobasidion annosum (Fr.) Bref. sensu lato (s.l.) putative cytochrome P450 gene (CPM2) was analysed with realtime quantitative PCR. CPM2 was highly expressed after 20 days of growth in bark of living spruce trees, and up-regulated by nitrogen starvation on artificial media. Infection of pine seedlings in the presence of high-carbon medium results in low expression levels of CPM2, thus indicating that starvation is the primary regulatory factor for induction of this gene. The predicted cpm2 protein contains 507 amino acids with an estimated molecular mass of 56.1 kDa, and display all conserved amino acids of the cytochrome P450 protein family. The protein has a high similarity to the ord1/ordA O-methylsterigmatocystin oxidoreductases from Aspergillus flavus/A. parasiticus, responsible for catalysing the final step in aflatoxin biosynthesis. Results indicate that cpm2 is potentially important for pathogenicity in H. annosum s.l.  相似文献   

19.
Mucha J  Guzicka M  Lakomy P  Zadworny M 《Planta》2012,236(4):975-988
Defence mechanisms in trees are not well understood. We assessed whether distribution of iron ions and their co-localisation with reactive oxygen species in Pinus sylvestris root cells reflect differential preferences of the pathogens Heterobasidion annosum sensu stricto, H. parviporum and H. abietinum to the host. Strains of H. annosum s.s. characterised by a greater preference for P. sylvestris induced accumulation of superoxide (O(2) (-)) in host cells 6?h after inoculation, whereas two peaks in accumulation of O(2) (-) (after 4 and 48?h) were observed after infection with strains of the pathogens H. parviporum and H. abietinum, which have a lower preference for P. sylvestris. Moreover, strains of H. annosum s.s. caused increased production of hydrogen peroxide (H(2)O(2)) in P. sylvestris cells, in contrast with strains of the other two species (H. parviporum and H. abietinum). Following inoculation with H. annosum s.s. strains, H(2)O(2) was correlated negatively with O(2) (-) and correlated positively with ferrous iron (Fe(2+)). Co-localisation of Fe(3+) with H(2)O(2) may suggest that they are involved in inducing hypersensitive responses and eventually cell death in roots inoculated with H. annosum s.s. strains, in contrast with H. parviporum, in which other mechanisms operate when the host is parasitised.  相似文献   

20.
The large pine weevil, Hylobius abietis, is a major pest in European conifer forests causing millions of Euros of damage annually. Larvae develop in the stumps of recently felled trees; the emerging adults feed on the bark of seedlings and may kill them. This study investigated the susceptibility of different developmental stages of H. abietis to commercial and commercially viable isolates of entomopathogenic fungi, Metarhizium and Beauveria. All the developmental stages of H. abietis can be killed by Metarhizium robertsii, Metarhizium brunneum, and Beauveria bassiana. The most virulent isolate of M. robertsii ARSEF4556 caused 100% mortality of pupae, larvae and adults on day 4, 6 and 12, respectively. This strain was further tested against adult weevils in different concentrations (10(5)-10(8) conidia cm(-2) or ml(-1)) using two types of fungal formulation: 'dry' conidia and 'wet' conidia (suspended in 0.03% aq. Tween 80) applied on different substrates (tissue paper, peat and Sitka spruce seedlings). 'Dry' conidia were more effective than 'wet' conidia on tissue paper and on spruce or 'dry' conidia premixed in peat. The LC(50) value for 'dry' conidia of isolate ARSEF4556 was three folds lower than 'wet' conidia on tissue paper. This study showed that 'dry' conidia are more effective than 'wet' conidia, causing 100% adult mortality within 12days. Possible strategies for fungal applications are discussed in light of the high susceptibility of larvae and pupae to fungal pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号