首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population genetic studies of retinitis pigmentosa.   总被引:21,自引:6,他引:15       下载免费PDF全文
A questionnaire survey characterized a sample of 670 probands with retinitis pigmentosa (RP) and allied disorders. Segregation analysis provided some evidence for a small proportion of sporadic cases and for decreased segregation ratios of the dominant and recessive genotypes, which could be attributed to delayed age of onset in some cases. The overall incidence of RP was indirectly calculated to be approximately 1 in 3,700, while the incidence of autosomal recessive RP, including at least two genocopies, was estimated to be about 1 in 4,450. Family data analysis included the calculation of the likelihood that each family represented autosomal recessive, autosomal dominant, and X-linked inheritance patterns. These likelihoods were then converted to relative probabilities and summed over the sample population to yield estimates of the proportions of the three Mendelian types. This large, heterogeneous sample indicated that approximately 84% of the cases in the United States may be autosomal recessive, while about 10% are dominant and 6% X-linked recessive.  相似文献   

2.
Summary In five families with idiopathic (hereditary) hemochromatosis, clinical and biochemical expression of the disease occurred in offspring of probands, suggesting an autosomal dominant mode of inheritance. However, HLA typing of subjects indicated that a homozygous-heterozygous mating almost certainly had occurred in four of the five families, resulting in homozygous offspring. Thus, in these families inheritance of the hemochromatosis trait was best explained in terms of an autosomal recessive or intermediate mode of inheritance. This study demonstrates the value of HLA typing in identifying homozygous-heterozygous matings in hemochromatosis families.  相似文献   

3.
Hereditary hearing loss is one of the most common neurosensory defects in humans.Approximately 70% of cases are nonsyndromic and could be inherited in autosomal dominant,autosomal recessive,mitochondrial,X-linked,and Y-linked manners (Wang et al.,2004;Alford,2011).The autosomal dominant type,comprising 15%-20% of nonsyndromic hearing loss,is monogenic and genetically heterogeneous.Since the first dominant deafness locus (DFNA1) was identified in 1992,a total of 64 DFNA loci have been mapped (DFNA1-DFNA64),and 27 corresponding genes have been identified (http://hereditaryhearingloss.org).Previous studies have revealed that one deafness locus can be linked to more than one gene (Bayazit and Yilmaz,2006),and the question "one locus,how many genes?" was first raised about a decade ago (Van-Hauwe et al.,1999).So far,several loci,including DFNA2 and DFNA3,have been shown to be related to one or more genes,showing high genetic heterogeneity in hereditary hearing loss (Grifa et al.,1999;Goldstein and Lalwani,2002;Yan et al.,2011).  相似文献   

4.
We used POINTER to perform segregation analysis of cryptogenic epilepsy in 1,557 three-generation families (probands and their parents, siblings, and offspring) ascertained from voluntary organizations. Analysis of the full data set indicated that the data were most consistent with an autosomal dominant (AD) model with 61% penetrance of the susceptibility gene. However, subsequent analyses revealed that the patterns of familial aggregation differed markedly between siblings and offspring of the probands. Risks in siblings were consistent with an autosomal recessive (AR) model and inconsistent with an AD model, whereas risks in offspring were inconsistent with an AR model and more consistent with an AD model. As a further test of the validity of the AD model, we used sequential ascertainment to extend the family history information in the subset of families judged likely to carry the putative susceptibility gene because they contained at least three affected individuals. Prevalence of idiopathic/cryptogenic epilepsy was only 3.7% in newly identified relatives expected to have a 50% probability of carrying the susceptibility gene under an AD model. Approximately 30% (i.e., 50% x 61%) were expected to be affected under the AD model resulting from the segregation analysis. These results suggest that the familial distribution of cryptogenic epilepsy is inconsistent with any conventional genetic model. The differences between siblings and offspring in the patterns of familial risk are intriguing and should be investigated further.  相似文献   

5.
Patterns of associations of clinical features in neurofibromatosis 1 (NF1)   总被引:1,自引:0,他引:1  
Neurofibromatosis 1 (NF1) is a common, fully penetrant autosomal dominant disease. The clinical course is generally progressive but highly variable, and the pathogenesis is poorly understood. We studied statistical associations among 13 of the most common or important clinical features in data from four separate sets of NF1 patients: a "developmental sample" of 1,413 probands from the NNFF International Database, an independent "validation sample" of 1,384 probands from the same database, 511 affected relatives of these probands, and 441 patients from a population-based registry in northwest England. We developed logistic regressive models for each of the 13 features using the developmental sample and attempted to validate these models in the other three samples. Age and gender were included as covariates in all models. Models were successfully developed and validated for ten of the 13 features analysed. The results are consistent with grouping nine of the clinical features into three sets: (1) café-au-lait spots, intertriginous freckling and Lisch nodules; (2) cutaneous, subcutaneous and plexiform neurofibromas; (3) macrocephaly, optic glioma and other neoplasms. In addition, three-way interactions among café-au-lait spots, intertriginous freckling and subcutaneous neurofibromas indicate that the first two groups are not independent. Our studies show that some individuals with NF1 are more likely than others to develop certain clinical features of the disease. Some NF1 features appear to share pathogenic mechanisms that are not common to all features.  相似文献   

6.
In Hungary, the school-age prevalences of severe visual handicaps and of profound childhood deafness have been estimated to be about 6/104 and 10/104, respectively. Most of these conditions have onset at birth or in early childhood and are aetiologically heterogeneous.

Severe visual handicaps are grouped under 11 aetiological categories, their relative contributions to the prevalence being: perinatal damage syndrome (20%; half of this is due to retinopathy of premature infants), cataracts (15%), choroidoretinal degenerations (15%), congenital abnormalities of the eye (15%), syndromes (10%), high myopia ± retinal detachment (7%), postnatal causes (5%), nystagmus (5%), optic atrophy (4%), bilateral retinoblastoma (2%) and prenatal causes (2%). Overall, Mendelian conditions (included under many of the above) account for about 50% with relatively more autosomal dominant than autosomal recessive and sex-linked entities, and acquired causes account for about 40% of the cases studied. No actiology could be assigned in 10% of the cases.

For profound childhood deafness, the rank order of the aetiological categories is: autosomal recessive entities (34%), postnatal causes (22%), perinatal causes (19%), autosomal dominant entities (17%), prenatal causes (5%) and unknown causes (3%).

Severe childhood visual handicaps are responsible for about 60 years of loss of life per 104 live births and about 400 years of impaired life per 104 live births. Genetic causes account for one-quarter of lost life years and three-quarters of impaired life years. The comparable estimates for profound childhood deafness are: about 240 years of life loss per 104 live births (again, about one-quarter due to genetic causes) and about 640 years of impaired life per 104 live births (about one-half due to genetic causes). In all these calculations, it has been assumed that the average life expectancy at birth for an individual in the population is 70 years.  相似文献   


7.
近亲结婚所致一遗传性非综合征型耳聋家系的调查   总被引:1,自引:1,他引:0  
舒安利  聂玉正 《遗传》2005,27(4):553-556
耳聋是一种最常见的人类感觉系统缺陷, 在已发现的遗传性耳聋中,有70%的属于非综合征型听力缺损。据估计非综合征型遗传性耳聋基因总数在100个以上,目前已经确定了近80个非综合征型遗传性耳聋的遗传位点,其中23个基因已经被成功克隆。文章报道一遗传性非综合征型耳聋家系。该家系中存在2代近亲结婚,共2代13人出现聋哑症状。经遗传分析,该家系的遗传方式与常染色体显性或隐性遗传均不符合,提示此家系中的非综合征型遗传性耳聋可能为线粒体突变所致。  相似文献   

8.
Mutations in GJB2 encoding the gap junction protein connexin-26 (Cx26) have been established as the basis of autosomal recessive non-syndromic hearing loss. The involvement of GJB2 in autosomal dominant deafness has also been proposed, although the putative mutation identified in one family with both deafness and palmoplantar keratoderma has recently been suggested to be merely a non-disease associated polymorphism. We have observed a similar phenotype in an Egyptian family that segregated with a heterozygous missense mutation of GJB2, leading to a non-conservative amino acid substitution (R75W). The deleterious dominant-negative effect of R75W on gap channel function was subsequently demonstrated in the paired oocyte expression system. Not only was R75W alone incapable of inducing electrical conductance between adjacent cells, but it almost completely suppressed the activity of co-expressed wildtype protein. The Cx26 mutant W77R, which has been implicated in autosomal recessive deafness, also failed to form functional gap channels by itself but did not significantly interfere with the function of wildtype Cx26. These data provide compelling evidence for the serious functional consequences of Cx26 mutations in dominant and recessive deafness. Received: 22 June 1998 / Accepted: 15 July 1998  相似文献   

9.
GDF5 is a second locus for multiple-synostosis syndrome   总被引:6,自引:0,他引:6       下载免费PDF全文
Multiple-synostosis syndrome is an autosomal dominant disorder characterized by progressive symphalangism, carpal/tarsal fusions, deafness, and mild facial dysmorphism. Heterozygosity for functional null mutations in the NOGGIN gene has been shown to be responsible for the disorder. However, in a cohort of six probands with multiple-synostosis syndrome, only one was found to be heterozygous for a NOGGIN mutation (W205X). Linkage studies involving the four-generation family of one of the mutation-negative patients excluded the NOGGIN locus, providing genetic evidence of locus heterogeneity. In this family, polymorphic markers flanking the GDF5 locus were found to cosegregate with the disease, and sequence analysis demonstrated that affected individuals in the family were heterozygous for a novel missense mutation that predicts an R438L substitution in the GDF5 protein. Unlike mutations that lead to haploinsufficiency for GDF5 and produce brachydactyly C, the protein encoded by the multiple-synostosis-syndrome allele was secreted as a mature GDF5 dimer. These data establish locus heterogeneity in multiple-synostosis syndrome and demonstrate that the disorder can result from mutations in either the NOGGIN or the GDF5 gene.  相似文献   

10.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with the type of autosomal recessive nonsyndromic neurosensory deafness known as "DFNB1." Studies indicate that DFNB1 (13q11-12) causes 20% of all childhood deafness and may have a carrier rate as high as 2. 8%. This study describes the analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness. Twenty of the 58 families were observed to have mutations in both alleles of Cx26. Thirty-three of 116 chromosomes contained a 30delG allele, for a frequency of .284. This mutation was observed in 2 of 192 control chromosomes, for an estimated gene frequency of .01+/-.007. The homozygous frequency of the 30delG allele is then estimated at .0001, or 1/10,000. Given that the frequency of all childhood hearing impairment is 1/1,000 and that half of that is genetic, the specific mutation 30delG is responsible for 10% of all childhood hearing loss and for 20% of all childhood hereditary hearing loss. Six novel mutations were also observed in the affected population. The deletions detected cause frameshifts that would severely disrupt the protein structure. Three novel missense mutations, Val84Met, Val95Met, and Ser113Pro, were observed. The missense mutation 101T-->C has been reported to be a dominant allele of DFNA3, a dominant nonsyndromic hearing loss. Data further supporting the finding that this mutation does not cause dominant hearing loss are presented. This allele was found in a recessive family segregating independently from the hearing-loss phenotype and in 3 of 192 control chromosomes. These results indicate that 101T-->C is not sufficient to cause hearing loss.  相似文献   

11.
Epidemiologic approaches to testing and estimating familial aggregation of a disease consist of comparing rates of disease in relatives of individuals with the disease (known as case probands) with rates of disease in relatives of individuals without the disease (known as control probands). Gold et al. (J Am Stat Ass 1967;62: 409-420) derived an explicit mathematical model and sampling methods, under which this approach is equivalent to testing the null hypotheses that the disease risk in families is homogenous. A basic assumption of this model is that every family member has the same risk of disease and that disease status is independent among family members, although the disease risk may vary between families. When the disease is suspected of having a genetic component, rather than being purely environmental, this model has been shown to be appropriate for detecting disease aggregation in siblings, when relatives are siblings of probands. This model however is unrealistic for use in nuclear families when the affected status of offspring is not independent of the affected status of parents, and these families are selected through an affected or an unaffected parent, so that a parent is the proband and relatives are offspring of probands. We extend the Gold et al. model to allow for the disease risk in offspring to vary with the affected status of the parent. We assume that families are selected through affected and unaffected parents, under a variation of single ascertainment. Under this study design, we show that the usual test of association between affected status of probands and relatives, performed by comparing sample proportions of affected relatives of affected and unaffected probands, respectively, is no longer equivalent to a test of homogeneity of disease risk in offspring. Instead, it is equivalent to testing that the disease risk in offspring is independent of the number of affected parents. This test reduces to a test of homogeneity if and only if one assumes that the variation in disease risk in offspring, between families, is solely due to the variation in the number of affected parents. As a result, we show that under this study design, the standard chi2 test must be modified in order to obtain a valid test of familial aggregation. In addition the sample proportions of affected relatives of case and control probands, respectively, are shown to provide unbiased estimates of the expected risk of disease in an offspring given an affected/unaffected parent. We apply these results to methods of sample selection and discuss the practical implications of these findings.  相似文献   

12.
Evidence for autosomal dominant inheritance of prostate cancer.   总被引:8,自引:3,他引:8       下载免费PDF全文
A family-history cancer survey was conducted on 5,486 men who underwent a radical prostatectomy, for clinically localized prostate cancer, in the Department of Urology at the Mayo Clinic during 1966-95; 4,288 men responded to the survey. Complex segregation analysis was performed to assess the genetic basis of age at diagnosis and the familial clustering of prostate cancer. For the total group, no single-gene model of inheritance clearly explained familial clustering of disease, which could be partly explained by lack of Hardy-Weinberg equilibrium, with an excess of homozygotes. After accounting for deviations from Hardy-Weinberg equilibrium, the best-fitting model that explained the familial aggregation and age at diagnosis was a rare autosomal dominant susceptibility gene, and this model fitted best when probands were diagnosed at <60 years of age. The model predicts that the frequency of the susceptibility gene in the population is .006 and that the risk of prostate cancer by age 85 years is 89% among carriers of the gene and 3% among noncarriers. A strength of our study is its large size, such that genetic models could be fitted within strata defined by the age of the proband. Although the autosomal dominant model was consistently the best model, the parameter estimates differed somewhat (P=.03) across the different age groups, suggesting genetic heterogeneity. Additional evidence that the hereditary basis of prostate cancer is likely to be genetically complex was provided by the following: (1) there was a significantly elevated age-adjusted risk of prostate cancer among brothers of probands, compared with their fathers (relative risk 1.5 [95% confidence interval 1.4-1.7]); (2) the autosomal dominant model predicted an excess of homozygotes, over that predicted by Hardy-Weinberg equilibrium; and (3) the model-predicted risk of prostate cancer among relatives was inadequate when probands were diagnosed at age >=70 years.  相似文献   

13.
Summary The marriage rate of epileptic patients was 62% in males und 78% in females. Compared with the rates in the general population, the male patients had a 15% lower rate, but there was no difference in females. There were 263 patients with at least one offspring selected for the study. There were 243 sons and 272 daughters (506 total, 1.9 per patient). Distribution by types of seizure was awakening grand mal, absence or myoclonic petit mal in 24%, grand mal with no aura in 21%, grand mal during sleep in 23%, diffuse grand mal in 7%, grand mal with aura in 13%, psychomotor seizure in 9%, and focal seizure in 3%. The probands were composed of 79% idiopathic and 21% symptomatic in pathogenetic classification. An epileptic EEG abnormality was demonstrated in 22% of male and 44% of female probands.The incidence of seizures among offspring was 2.4% (4.2% age-corrected) in a narrow sense (epilepsy) and 9.1% in a broad sense including febrile convulsions. The latter morbidity was 11.0% for the idiopathic and 3.2% for the symptomatic group; 11.0% for female and 6.9% for male probands; 10.2% for sons and 8.1% for daughters. The figure was higher for the probands with the age range at onset of seizure of 0–4 years (20.6%) and 20–29 years (12.6%) than for those with other age ranges; higher for those with awakening grand mal, absence, myoclonic petit mal, or grand mal with no aura than for those with other types of seizure; and higher for those with family history of epilepsy than those without it.Possible correlation of types of seizure between probands and offspring was demonstrated. Thirty-seven percent of offspring exhibited epileptic EEG abnormalities, and the ratio of epileptic EEG abnormalities to clinical manifestation is about 4:1.Possible existence of familial aggregation of EEG abnormalities and of two kinds of families with large or small epileptic predisposition was indicated.The importance of the role of hereditary and environmental factors in epileptic pathogenesis is proved, and the results of an investigation of congenital malformation among offspring of epileptic mothers are presented. These results were considered to be useful for genetic counseling of epileptic patients.  相似文献   

14.
Summary A family is described showing deafness in three consecutive generations. Hirschsprung's disease was present in at least two of the affected patients and a history of bowel dysfunction was present in the third. The association of the two disorders in this family may be due to a single autosomal dominant gene and in this regard differs from previously reported isolated patients with Hirschsprung's disease and deafness.  相似文献   

15.
Non-insulin dependent diabetes (NIDDM) is a polygenic heterogeneous disorder of glucose homeostasis. Maturity-onset diabetes of the young (MODY) is a monogenic subtype of NIDDM characterised by early-onset (< 25 years) and autosomal dominant inheritance. Mutations in the hepatocyte nuclear factor 1 alpha (HNF-1α) gene have recently been shown to cause MODY. The incidence of mutations in this gene in MODY and late-onset NIDDM is not known. We have developed a rapid specific polymerase chain reaction test for HNF-1α mutations; this test involves the use of fluorescently labelled forward primers and modified reverse primers to detect length polymorphisms resulting from frameshift mutations. With this method, we have screened 102 MODY probands, viz. 60 defined according to strict diagnostic criteria (autosomal dominant inheritance and at least one member diagnosed age < 25 years) and 95 late-onset NIDDM probands (diagnosed 35–70 years with ≥ 1 affected relative), for the presence of 9 known HNF-1α frameshift mutations, including 6 that occur at two sites for recurring mutation (residues 291/292 and 379). Mutations were detected in 11 of the strictly defined MODY probands and one mutation was also found in a single subject with early-onset NIDDM but no family history of the disease. The HNF-1α frameshift mutations were not detected in any late-onset NIDDM subjects, suggesting these mutations do not have a major role in the pathogenesis of NIDDM. Our results indicate that the prevalence of the nine frameshift mutations in strictly defined UK MODY is 18%, with the P291fsinsC mutation alone having a frequency of 13%. Received: 13 May 1997 / Accepted: 13 August 1997  相似文献   

16.
In mutation testing for Huntington disease, an autosomal dominant hereditary late-onset disorder, unfavourable test outcomes in at-risk individuals provide important information about other family members at risk. On the other hand, common counselling practice considers favourable outcomes as non-informative for at-risk relatives, except for the offspring of the tested individual. We shall show, however, that favourable outcomes also change the perspectives for the tested individual's first-degree relatives at risk. In the case of a (prospective) parent originally at 50% risk, and with n equalling the number of children or fetuses identified as non-carriers, the probability of being a non-carrier equals 2 (n)/(2 (n)+1) for the at-risk parent, providing that none of the offspring of this parent has been identified as a carrier. Likewise, the probability of being a non-carrier equals (2 (n+1)+1)/(2 (n+1)+2) for the (future) siblings of the tested individual. These changes in probabilities are important for individuals who are considering prenatal or presymptomatic DNA-testing for autosomal dominant hereditary late-onset disorders, such as Huntington disease and hereditary forms of cancer (BRCA1/2, FAP, HNPCC). Consequences can be far reaching in the case of pregnancies, where the risk of miscarriage after a prenatal test is 1%-2%. Parents initially at 50% risk may consider not having a prenatal test in successive pregnancies, knowing that favourable test results in previous pregnancies have considerably reduced their personal risk.  相似文献   

17.
Waardenburg syndrome (WS) is a rare genetic disorder. Patients have heterochromia or eyes with iris of different color, increased inter-canthal distance, distopia canthorum, pigmentation anomalies, and varying degree of deafness. It usually follows autosomal dominant pattern. In this report, two cases have been discussed but no familial history of WS has been found. Counseling of the patient is necessary and cases of irreversible deafness have been treated.  相似文献   

18.
The diversity of hereditary pathology in 5 regions of Kostroma district was studied. 32 nosological forms of autosomal dominant, 30 autosomal recessive and 7 X-linked recessive disorders were found. The most frequent autosomal dominant disorders were: neurofibromatosis, pigmentary degeneration of retina, hypochondroplasia, ichtiosis, idiopathic scoliosis. The most frequent among the autosomal recessive disorders were: oligophrenia, pigmentary degeneration of retina, muscular atrophy of juvenile Kugelberg--Welander type, congenital cataract. The most frequent X-linked disorders were: muscular Duchenne type dystrophy and hemophilia A. Analysis of mutant gene distribution over the territory by the study of birthplaces of probands and their parents was carried out.  相似文献   

19.
In some Palestinian communities, the prevalence of inherited prelingual deafness is among the highest in the world. As an initial step towards understanding the genetic causes of hearing loss in the Palestinian population, 48 independently ascertained probands with non-syndromic hearing loss were evaluated for mutations in the connexin 26 gene. Of the 48 deaf probands, 11 (23%) were homozygous or compound heterozygous for mutations in GJB2. Five different mutations were identified: ivs1(+1) G-->A, 35delG, 167delT, T229C, 235delC. Nine deaf probands were homozygous and only two compound heterozygous. Among 400 hearing Palestinian controls, one carrier was observed (for 167delT). We show that GJB2 ivs1(+1) G-->A disrupts splicing, yielding no detectable message. Linkage disequilibrium analysis suggests, in the Palestinian and Israeli populations, a common origin of the 35delG mutation, which is worldwide, and of 167delT, which appears specific to Israeli Ashkenazi and Palestinian populations. A high prevalence of deafness, high frequency of homozygosity rather than compound heterozygosity among deaf, and low mutation carrier frequency together reflect the high levels of consanguinity of many extended Palestinian families. Some of the 25 families with multiple cases of inherited prelingual deafness and wildtype GJB2 sequences may represent as-yet-unknown genes for inherited hearing loss.  相似文献   

20.
Charcot-Marie-Tooth disease (CMT) with deafness is clinically distinct among the genetically heterogeneous group of CMT disorders. Molecular studies in a large family with autosomal dominant CMT and deafness have not been reported. The present molecular study involves a family with progressive features of CMT and deafness, originally reported by Kousseff et al. Genetic analysis of 70 individuals (31 affected, 28 unaffected, and 11 spouses) revealed linkage to markers on chromosome 17p11.2-p12, with a maximum LOD score of 9.01 for marker D17S1357 at a recombination fraction of .03. Haplotype analysis placed the CMT-deafness locus between markers D17S839 and D17S122, a approximately 0.6-Mb interval. This critical region lies within the CMT type 1A duplication region and excludes MYO15, a gene coding an unconventional myosin that causes a form of autosomal recessive deafness called DFNB3. Affected individuals from this family do not have the common 1.5-Mb duplication of CMT type 1A. Direct sequencing of the candidate peripheral myelin protein 22 (PMP22) gene detected a unique G-->C transversion in the heterozygous state in all affected individuals, at position 248 in coding exon 3, predicted to result in an Ala67Pro substitution in the second transmembrane domain of PMP22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号