首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild legumes (herb or tree) are widely distributed in arid regions and actively contribute to soil fertility in these environments. The N2-fixing activity and tolerance to drastic conditions may be higher in wild legumes than in crop legumes. The wild legumes in arid zones harbor diverse and promiscuous rhizobia in their root-nodules. Specificity existed only in few rhizobia from wild legumes, however, the majority of them are with wide host range. Based on phenotypic characteristics and molecular techniques (protein profiles, polysaccharides, plasmids, DNA-DNA hybridization, 16SrRNA, etc.), the root-nodule bacteria that was isolated from wild legumes had been classified into four genera (Rhizobium, Bradyrhizobium, Mesorhizobium and Sinorhizobium). The rhizobia of wild legumes in arid zones, exhibit higher tolerance to the prevailing adverse conditions, e.g. salt stress, elevated temperatures and desiccation. These rhizobia may be used to inoculate wild, as well as, crop legumes, cultivated in reclaimed desert lands. Recent reports indicated that the wild-legume rhizobia formed successful symbioses with some grain legumes. Moreover, intercropping of some N2-fixing tree legumes (e.g. Lablab, Leucaena, Sesbania, etc.) to pasture grasses improved biomass yield and herb quality. In recent years, the rhizobia of wild legumes turn the attention of biotechnologists. These bacteria may have specific traits that can be transferred to other rhizobia through genetic engineering tools or used to produce industrially important compounds. Therefore, these bacteria are very important from both economic and environmental points of view.  相似文献   

2.
A total of about 50 strains of rhizobia from two leguminous trees (Acacia andProsopis) were described and compared with 20 reference strains of rhizobia, from other tree and herb legumes on the basis of protein, fatty acid and plasmid profiles, and DNA-DNA hybridization. The rhizobia formed thirteen clusters based on protein profile analysis. These clusters were not in complete agreement with a previously published cluster analysis based on numerical taxonomy of phenotypic characteristics and lipopolysaccharide (LPS) profile analysis (Zhanget al., Int. J. Syst. Bacteriol. 41, 104, 1991; Lindström and Zahran,FEMS Microbiol. Lett. 107, 327, 1993). The fatty acid methyl esters (FAME) of representative strains of rhizobia were analyzed. The rhizobia formed fourteen different clusters based on FAME analysis but the results also conflicted with the phenotypically based methods of analysis. Strains of rhizobia classified in one cluster by any of the above methods of analysis may have shown very different fatty acid profiles. The plasmid profile analysis of the tree rhizobia., on the other hand, was more consistent with the phenotype- and LPS-based numerical analysis. Some strains of the tree rhizobia showed medium or high levels of DNA homology withRhizobium meliloti. The DNA-DNA hybridization correlated well with protein and fatty acid profiles. The described methods provide a significant taxonomic tool for discrimination between rhizobia of leguminous trees. However, further DNA-DNA hybridization studies with other recognized species of rhizobia are needed for proper identification and classification of the diverse rhizobia from leguminous trees.  相似文献   

3.
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana from various sites in the North and South of Sahara was analyzed for their diversity at both taxonomic and symbiotic levels. On the basis of whole cell protein (SDS-PAGE) and 16S rDNA sequence analysis, most of the strains were found to belong to the Sinorhizobium and Mesorhizobium genera where they may represent several different genospecies. Despite their chromosomal diversity, most A. tortilis Mesorhizobium and Sinorhizobium symbionts exhibited very similar symbiotic characters. Nodulation tests showed that the strains belong to the Acacia-Leucaena-Prosopis nodulation group, although mainly forming non-fixing nodules on species other than A. tortilis. Most of the strains tested responded similarly to flavonoid nod gene inducers, as estimated by using heterologous nodA-lacZ fusions. Thin layer chromatography analysis of the Nod factors synthesized by overproducing strains showed that most of the strains exhibited similar profiles. The structures of Nod factors produced by four different Sinorhizobium sp. strains were determined and found to be similar to other Acacia-Prosopis-Leucaena nodulating rhizobia of the Sinorhizobium-Mesorhizobium-Rhizobium branch. They are chitopentamers, N-methylated and N-acylated by common fatty acids at the terminal non reducing sugar. The molecules can also be 6-O sulfated at the reducing end and carbamoylated at the non reducing end. The phylogenetic analysis of available NodA sequences, including new sequences from A. tortilis strains, confirmed the clustering of the NodA sequences of members of the Acacia-Prosopis-Leucaena nodulation group.  相似文献   

4.
AIMS: The molecular diversity of 25 strains of rhizobia, isolated in Sicily from root nodules of the Mediterranean shrubby legume Spanish broom (Spartium junceum L.), is presented in relation to the known rhizobial reference strains. METHODS AND RESULTS: Our approach to the study of the S. junceum rhizobial diversity combined the information given by the 16S and the intergenic spacer (IGS) 16S-23S rDNA polymorphic region by obtaining them in a single polymerase chain reaction (PCR) step. The PCR fragment size of the S. junceum isolates was 2400-2500 bp and that of the reference strains varied from 2400 in Bradyrhizobium strains to 2800 in Sinorhizobium strains. Inter- and intrageneric length variability was found among the reference strains. Restriction fragment length polymorphisms (RFLP) analysis allowed us to identify eight genotypes among the S. junceum rhizobia that were clustered into two groups, both related to the Bradyrhizobium lineage. Sequencing of representative strains of the two clusters confirmed these data. The 16S-IGS PCR-RFLP approach, when applied to rhizobial reference strains, allowed very close species (i.e. Rhizobium leguminosarum/R. tropici) to be separated with any of the three enzymes used; however, cluster analysis revealed inconsistencies with the 16S-based phylogenesis of rhizobia. CONCLUSIONS: Rhizobia nodulating S. junceum in the Mediterranean region belong to the Bradyrhizobium lineage. Our results confirm the resolution power of the 16S-23S rDNA in distinguishing among rhizobia genera and species, as well as the usefulness of the PCR-RFLP method applied to the entire 16S-IGS region for a rapid tracking of the known relatives of new isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The present paper is, to our knowledge, the first report on rhizobia nodulating a Mediterranean wild woody legume.  相似文献   

5.
The potential of using fatty acid methyl ester (FAME) profiles of Rhizobium leguminosarum bv. viceae , phaseoli and trifolii , and Rhizobium sp. ( Cicer ) strains, for the identification of unknown isolates was assessed. This was achieved by developing a Rhizobium FAME library using 16 different Rhizobium strains of Rh. leguminosarum bv. viceae ( n  = 5), Rh. leguminosarum bv. phaseoli ( n  = 5), Rh. leguminosarum bv. trifolii ( n  = 1) and Rhizobium sp. ( Cicer ) ( n  = 5). Although there were considerable differences between Rh. leguminosarum biovars and strains and Rhizobium sp. ( Cicer ) strains, the variation within a particular biovar of Rh. leguminosarum was not high. Nevertheless, the feature FAME profiles of the various groups in the library allowed 75 putative rhizobia obtained from surface-sterilized nodules of field-grown lentil and pea plants to be identified.  相似文献   

6.
AIMS: To determine the biodiversity of rhizobial strains nodulating Cicer arietinum L. in representative soils from various areas of Morocco. METHODS AND RESULTS: Symbiotic traits, utilization of 49 carbohydrate sources, resistance to antibiotics and heavy metals, tolerance to salinity, to extreme temperatures and pH were studied as phenotypic markers. In addition, restriction fragment length polymorphism (RFLP) of PCR-amplified 16S rDNAs were compared with those of reference strains. Numerical analysis of the phenotypic characteristics showed that the 48 strains studied fell into three distinct groups. RFLP analysis of 16S rRNA genes revealed an additional heterogeneity and four ribotypes were identified. CONCLUSIONS: Chickpea rhizobia isolated from Moroccan soils are both phenotypically and genetically diverse. Most of these rhizobia belong to the Mesorhizobium genus. However, some strains originating from a particular soil appeared to have 16S rRNA genes similar to Sinorhizobium as well as very distinct auxanographic characteristics compared with Mesorhizo- bium isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: A well characterized collection of chickpea-nodulating rhizobia in representative soils of Morocco has been generated, which can be used to develop efficient inoculants for this crop. This is the first report evidencing that chickpeas may be nodulated by bacteria from the Sinorhizobium genus.  相似文献   

7.
A total of 159 endophytic bacteria were isolated from surface-sterilized root nodules of wild perennial Glycyrrhiza legumes growing on 40 sites in central and northwestern China. Amplified fragment length polymorphism (AFLP) genomic fingerprinting and sequencing of partial 16S rRNA genes revealed that the collection mainly consisted of Mesorhizobium, Rhizobium, Sinorhizobium, Agrobacterium and Paenibacillus species. Based on symbiotic properties with the legume hosts Glycyrrhiza uralensis and Glycyrrhiza glabra, we divided the nodulating species into true and sporadic symbionts. Five distinct Mesorhizobium groups represented true symbionts of the host plants, the majority of strains inducing N2-fixing nodules. Sporadic symbionts consisted of either species with infrequent occurrence (Rhizobium galegae, Rhizobium leguminosarum) or species with weak (Sinorhizobium meliloti, Rhizobium gallicum) or no N2 fixation ability (Rhizobium giardinii, Rhizobium cellulosilyticum, Phyllobacterium sp.). Multivariate analyses revealed that the host plant species and geographic location explained only a small part (14.4%) of the total variation in bacterial AFLP patterns, with the host plant explaining slightly more (9.9%) than geography (6.9%). However, strains isolated from G. glabra were clearly separated from those from G. uralensis, and strains obtained from central China were well separated from those originating from Xinjiang in the northwest, indicating both host preference and regional endemism.  相似文献   

8.
We report on the isolation and the characterization of nitrogen-fixing root nodule bacteria isolated from natural legumes in a region of South Tunisia corresponding to the infra-arid climatic zone. A collection of 60 new bacterial root nodule isolates were obtained from 19 legume species belonging to the genera Acacia, Anthyllis, Argyrolobium, Astragalus, Calycotome, Coronilla, Ebenus, Genista, Hedysarum, Hippocrepis, Lathyrus, Lotus, Medicago, Ononis. The isolates were characterised by (1) comparative 16S ARDRA using 7 enzymes, (2) total cell protein SDS-PAGE analysis and (3) 16S rDNA sequencing. The results show that these isolates are diverse and belong to the genera Rhizobium, Sinorhizobium, Mesorhizobium and Bradyrhizobium. Bradyrhizobium were further characterised by 16S-23S rDNA IGS sequencing. Surprisingly strains nodulating Astragalus cruciatus, Lotus creticus and Anthyllis henoniana were identified as Rhizobium galegae, a species recorded only as endosymbiont of Galega officinalis and G. orientalis in northern regions so far.  相似文献   

9.
Abstract Rhizobium strains nodulating Galega species were characterized by metabolic tests, maximum growth temperature determinations in a temperature gradient incubator and phage typing, and compared with other fast-growing rhizobia. By numerical taxonomy it was shown that the Galega Rhizobium strains are closely related to each other and unrelated to the recognized species of Rhizobium . The maximum growth temperature of rhizobia nodulating G. orientalis was 33.0–34.0°C and of rhizobia nodulating G. officinalis 35.0–37.0°C. The Galega rhizobia were only lysed by their own phages, and not by typing phages for other Rhizobium species. The G + C% of Rhizobium sp. ( Galega ) strainswas 63%.44 previously unclassified fast-growing rhizobia from tropical plants, which were included in the experiments, were shown to form a heterogenous group with diverse properties. The results confirm and extend previous findings, and suggest that Rhizobum sp. ( Galega ) should be considered a new species of Rhizobium .  相似文献   

10.
Formation of Tumor-Like Structures on Legume Roots by Rhizobium   总被引:5,自引:0,他引:5       下载免费PDF全文
Tumor-like structures appeared on the roots of Medicago sativa, Alysicarpus vaginalis, and Trifolium pratense inoculated with a non-nodulating strain of Rhizobium trifolii or with irradiated cultures of either of two nodulating Rhizobium strains. The structures were composed of disorganized plant tissues which, on the basis of microscopic examination, were devoid of bacterial cells. Rhizobia which could nodulate legumes of one cross-inoculation group and which were able to induce formation of such tumor-like structures on plants of a second cross-inoculation group were isolated from extracts of these root growths. The apparent tumorogenic activity of some of the rhizobia, but not their nodulating capacity, was lost when the bacteria were transferred in laboratory media.  相似文献   

11.
Legumes from the genus Pachyrhizus, commonly known as yam bean, are cultivated in several countries from the American continent and constitute an alternative source for sustainable starch, oil and protein production. The endosymbionts of these legumes have been poorly studied although it is known that this legume is nodulated by fast and slow growing rhizobia. In this study we have analyzed a collection of strains isolated in several countries using different phenotypic and molecular methods. The results obtained by SDS-PAGE analysis, LPS profiling and TP-RAPD fingerprinting showed the high diversity of the strains analyzed, although all of them presented slow growth in yeast mannitol agar (YMA) medium. These results were confirmed using 16S-23S internal transcribed spacer (ITS) region and complete sequencing of the 16S rRNA gene, showing that most strains analyzed belong to different species of genus Bradyrhizobium. Three strains were closely related to B. elkanii and the rest of the strains were related to the phylogenetic group constituted by B. japonicum, B. liaoningense, B. yuanmingense and B. betae. These results support that the study of rhizobia nodulating unexplored legumes in different geographical locations will allow the discovery of new species able to establish legume symbioses.  相似文献   

12.
Nitrogen is often a limiting nutrient, therefore the sustainability of food crops, forages and green manure legumes is mainly associated with their ability to establish symbiotic associations with stem and root-nodulating N2-fixing rhizobia. The selection, identification and maintenance of elite strains for each host are critical. Decades of research in Brazil resulted in a list of strains officially recommended for several legumes, but their genetic diversity is poorly known. This study aimed at gaining a better understanding of phylogenetic relationships of 68 rhizobial strains recommended for 64 legumes, based on the sequencing of the 16S rRNA genes. The strains were isolated from a wide range of legumes, including all three subfamilies and 17 tribes. Nine main phylogenetic branches were defined, seven of them related to the rhizobial species: Bradyrhizobium japonicum, B. elkanii, Rhizobium tropici, R. leguminosarum, Sinorhizobium meliloti/S. fredii, Mesorhizobium ciceri/M. loti, and Azorhizobium caulinodans. However, some strains differed by up to 35 nucleotides from the type strains, which suggests that they may represent new species. Two other clusters included bacteria showing similarity with the genera Methylobacterium and Burkholderia, and amplification with primers for nifH and/or nodC regions was achieved with these strains. Host specificity of several strains was very low, as they were capable of nodulating legumes of different tribes and subfamilies. Furthermore, host specificity was not related to 16S rRNA, therefore evolution of ribosomal and symbiotic genes may have been diverse. Finally, the great diversity observed in this study emphasizes that tropics are an important reservoir of N2-fixation genes.  相似文献   

13.
Summary Fast-growingRhizobium japnicum strains derived from the People's Republic of China were compared with a fast-growingRhizobium isolate from Lablab for their ability to nodulate tropical legumes grown in Leonard-jars and test tube culture. Fast-growingR. japonicum strains were all effective to varying degrees in their symbiosis withVigna unguiculata. Two strains USDA 192 and USDA 201, effectively nodulatedGlycine whightii and one strain, USDA 193, effectively nodulatedMacroptilium atropurpureum. Other nodulation responses in tropical legumes were ineffective. The fast-growing isolate from Lablab was more promiscuous, effectively nodulating with a larger host range. The fast-growing Lablab strain was considered more akin, on a symbiotic basis, to the slow-growing cowpea type rhizobia than the fast-growing China strains ofR. japonicum whilst maintaining physiological characteristics of other fast-growing rhizobia.  相似文献   

14.
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16S rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and broad-host-range Rhizobium sp. strain NGR 234. These sequences were compared with the corresponding previously published sequences of Rhizobium leguminosarum, Rhizobium meliloti, Agrobacterium tumefaciens, Azorhizobium caulinodans, and Bradyrhizobium japonicum. All of the sequences of the fast-growing soybean rhizobia, including strain NGR 234, were identical to the sequence of R. meliloti and similar to the sequence of R. leguminosarum. These results are discussed in relation to previous findings; we concluded that the fast-growing soybean-nodulating rhizobia belong in the genus Rhizobium and should be called Rhizobium fredii.  相似文献   

15.
This is the first systematic study of rhizobia associated with Albizia trees. The analyses of PCR-RFLP and sequencing of 16S rRNA genes, SDS-PAGE of whole-cell proteins and clustering of phenotypic characters grouped the 31 rhizobial strains isolated from Albizia into eight putative species within the genera Bradyrhizobium, Mesorhizobium and Rhizobium. Among these eight rhizobial species, five were unique to Albizia and the remaining three were shared with Acacia and Leucaena, two legume trees coexisting with Albizia in China. These results indicated that Albizia species nodulate with a wide range of rhizobial species and had preference of microsymbionts different from Acacia and Leucaena. The definition of four novel groups, Mesorhizobium sp., Rhizobium sp. I, Rhizobium sp. II and "R. giardinii", indicates that further studies with enlarged rhizobial population are necessary to better understand the diversity and to clarify the taxonomic relationships of Albizia-associated rhizobia.  相似文献   

16.
In a previous work, we showed that non-nodulating agrobacteria strains were able to colonize root nodules of common bean. Both rhizobia and agrobacteria co-existed in the infected nodules. No impact on symbiosis was found in laboratory conditions when using sterile gravel as a support for growth. In this study, soil samples originating from different geographic and agronomic regions in Tunisia were inoculated with a mixture of agrobacteria strains isolated previously from root nodules of common bean. A significant effect on nodulation and vegetal growth of common bean was observed. Characterization of nodulating rhizobia and comparison with non-inoculated controls showed a biased genetic structure. It seemed that Rhizobium gallicum was highly inhibited, whereas nodulation by Sinorhizobium medicae was favored. Co-inoculation of non-sterile soils with R. gallicum and agrobacteria confirmed these findings. In vitro antibiosis assays indicated that agrobacteria exercised a significant antagonism against R. gallicum.  相似文献   

17.
江汉平原及其周边地区花生根瘤菌的遗传多样性   总被引:15,自引:3,他引:12  
采用RAPD分析技术和16S-23S rRNA间隔区段(IGS)RFLP分析,分别对分离自江汉平原及其周缘地区的花生根瘤菌进行了遗传多样性和系统发育研究。结果表明,全部供试验菌分别在48%和50%的相似性水平分为Ⅰ、Ⅱ两群,供试花生根瘤菌与参比菌株B.japonicum和B.elkanii聚在群I,参比菌株Rhizobium Sinorhizobium,Mesorhizobium和Agrobacterium聚在群Ⅱ。供试花生根瘤菌的遗传多样性及其在系统发育中的地位主要受地域因素的影响,来自江汉平原中心地带天门和潜江的菌株在76%以上的相似性水平上聚在一起,处于周边地带的武汉和荆州,由于其特定的地理因素的影响。菌株的多样性更为丰富,部分菌株在分类上与其它地域的菌株相互融合,并在较高的相似水平存在一定摆动性,来自外缘随州的菌株,表现了明显的地理分隔作用,其在系统演化中的地位相对独立,总体上从平原腹地到外缘地区。根瘤菌地理分隔作用逐渐明显,在平原外缘的交接地带,根瘤菌的多样性最为丰富。  相似文献   

18.
西北地区天蓝苜蓿根瘤菌16S rDNA RFLP分析   总被引:1,自引:0,他引:1  
利用RFLP和序列测定方法,对分离自西北地区的67株天蓝苜蓿根瘤菌16S rDNA进行了分析研究。结果表明:所有供试菌株分别归属于中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和土壤杆菌属(Agrobac-terium)。以CCNWNX0042-2为代表的大部分天蓝苜蓿根瘤菌属于草木樨中华根瘤菌(Sinorhizobium meliloti),其余菌株在分群上表现出了较为明显的地域特征。  相似文献   

19.
Twenty-seven new Rhizobium isolates were obtained from root nodules of wild and crop legumes belonging to the genera Vicia, Lathyrus and Pisum from different agroecological areas in central and southern Italy. A polyphasic approach including phenotypic and genotypic techniques was used to study their diversity and their relationships with other biovars and species of rhizobia. Analysis of symbiotic properties and stress tolerance tests revealed that wild isolates showed a wide spectrum of nodulation and a marked variation in stress tolerance compared with reference strains tested in this study. All rhizobial isolates (except for the isolate CG4 from Galega officinalis) were presumptively identified as Rhizobium leguminosarum biovar viciae both by their symbiotic properties and the specific amplification of the nodC gene. In particular, we found that the nodC gene could be used as a diagnostic molecular marker for strains belonging to the bv. viciae. RFLP-PCR 16S rDNA analysis confirms these results, with the exception of two strains that showed different RFLP-genotypes from those of the reference strains of R. leguminosarum bv. viciae. Analysis of intraspecies relationship among strains by using the RAPD-PCR technique showed a high level of genetic polymorphism, grouping our isolates and reference strains into six different major clusters with a similarity level of 20%. Data from seven parameters of phenotypic and genotypic analyses were evaluated by using principal component analysis which indicated the differences among strains and allowed them to be divided into seven different groups.  相似文献   

20.
Previously, we found that genetically diverse rhizobia nodulating Lotus corniculatus at a field site devoid of naturalized rhizobia had symbiotic DNA regions identical to those of ICMP3153, the inoculant strain used at the site (J. T. Sullivan, H. N. Patrick, W. L. Lowther, D. B. Scott, and C. W. Ronson, Proc. Natl. Acad. Sci. USA 92:8985-8989, 1995). In this study, we characterized seven nonsymbiotic rhizobial isolates from the rhizosphere of L. corniculatus. These included two from plants at the field site sampled by Sullivan et al. and five from plants at a new field plot adjacent to that site. The isolates did not nodulate Lotus species or hybridize to symbiotic gene probes but did hybridize to genomic DNA probes from Rhizobium loti. Their genetic relationships with symbiotic isolates obtained from the same sites, with inoculant strain ICMP3153, and with R. loti NZP2213T were determined by three methods. Genetic distance estimates based on genomic DNA-DNA hybridization and multilocus enzyme electrophoresis were correlated but were not consistently reflected by 16S rRNA nucleotide sequence divergence. The nonsymbiotic isolates represented four genomic species that were related to R. loti; the diverse symbiotic isolates from the site belonged to one of these species. The inoculant strain ICMP3153 belonged to a fifth genomic species that was more closely related to Rhizobium huakuii. These results support the proposal that nonsymbiotic rhizobia persist in soils in the absence of legumes and acquire symbiotic genes from inoculant strains upon introduction of host legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号