首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   

2.
Haemophilus influenzae elaborates a surface protein called Hap, which is associated with the capacity for intimate interaction with cultured epithelial cells. Expression of hap results in the production of three protein species: outer membrane proteins of approximately 155 kDa and 45 kDa and an extracellular protein of approximately 110 kDa. The 155 kDa protein corresponds to full-length mature Hap (without the signal sequence), and the 110 kDa extracellular protein represents the N-terminal portion of mature Hap (designated Haps). In the present study, we examined the mechanism of processing and secretion of Hap. Site-directed mutagenesis suggested that Hap is a serine protease that undergoes autoproteolytic cleavage to generate the 110 kDa extracellular protein and the 45 kDa outer membrane protein. Biochemical analysis confirmed this conclusion and established that cleavage occurs on the bacterial cell surface. Determination of N-terminal amino acid sequence and mutagenesis studies revealed that the 45 kDa protein corresponds to the C-terminal portion of Hap, starting at N1037. Analysis of the secondary structure of this protein (designated Hapβ) predicted formation of a β-barrel with an N-terminal transmembrane α-helix followed by 14 transmembrane β-strands. Additional analysis revealed that the final β-strand contains an amino acid motif common to other β-barrel outer membrane proteins. Upon deletion of this entire C-terminal consensus motif, Hap could no longer be detected in the outer membrane, and secretion of Haps was abolished. Deletion or complete alteration of the final three amino acid residues had a similar but less dramatic effect, suggesting that this terminal tripeptide is particularly important for outer membrane localization and/or stability of the protein. In contrast, isolated point mutations that disrupted the amphipathic nature of the consensus motif or eliminated the C-terminal tryptophan had no effect on outer membrane localization of Hap or secretion of Haps. These results provide insight into a growing family of Gram-negative bacterial exoproteins that are secreted by an IgA1 protease-like mechanism; in addition, they contribute to a better understanding of the structural determinants of targeting of β-barrel proteins to the bacterial outer membrane.  相似文献   

3.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

4.
5.
6.
A Novel Aminopeptidase with Highest Preference for Lysine   总被引:1,自引:0,他引:1  
Neuropeptides are formed from sedentary precursors to smaller, active peptides by processing enzymes cleaving at paired basic residues. The process generates peptide intermediates with additional Lys or Arg residues at their NH(2) and COOH termini; the N-terminal basic amino acids are later removed by specific aminopeptidases. We report here a novel lysine-specific aminopeptidase (KAP) of ubiquitous distribution. The enzyme was resolved from puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB), and neuron-specific aminopeptidase (NAP). It was purified by FPLC after (NH(4))(2)SO(4) precipitation. The purified KAP had a K(m) of 333 microM with a V(max) of 0.7 nmol Lys ssNA/min/mg protein. N-terminal basic amino acids, Lys in particular, were its favorable substrates. KAP was inhibited by chelating agents and by serine protease inhibitors. It was highly sensitive to aminopeptidase inhibitor bestatin, but insensitive to puromycin and amastatin, showing that KAP is distinct from PSA, NAP, and aminopeptidase A (APA). The 62,000-Da enzyme had a pH optimum at 7.5 and NaCl was its strongest activator. However, metals could not restore KAP's activity after it was dialyzed against EGTA. Our data indicated that rat KAP did not resemble any aminopeptidases as well as the microbial lysine aminopeptidases.  相似文献   

7.
Atrial natriuretic peptide (ANP) is stored in atrial granules primarily as a larger molecular weight precursor (pro-ANP), which is believed to be rapidly converted to an active peptide of 28 amino acids during or shortly after secretion. A tissue kallikrein-like serine protease has been suggested as a potential processing enzyme. In the present immunocytochemical study, using specific monoclonal antibodies, we found that esterase A, a kallikrein-like serine protease, was demonstrable in rat atrial myocytes and in ventricular myocytes, and was capable of cleaving pro-ANP to yield a low molecular weight product. Using colloidal gold immunocytochemistry at the electron microscopic level, we have found esterase A in atrial myocytes, both in granules and in another subcellular site that corresponds to sarcoplasmic reticulum. Double-label electron microscopic immunocytochemical results indicated that esterase A can co-localize with ANP in granules of atrial myocytes.  相似文献   

8.
In this study, we identified and characterized a novel secreted protein, the extracellular serine protease EspP, which is encoded by the large plasmid of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. The corresponding espP gene consists of a 3900 bp open reading frame that is able to encode a 1300-amino-acid protein. EspP is synthesized as a large precursor which is then processed at the N- and C-termini during secretion. It can be grouped into the autotransporter protein family. The deduced amino acid sequence of EspP showed homology to several secreted or surface-exposed proteins of pathogenic bacteria, in particular EspC of enteropathogenic E. coli and IgA1 proteases from Neisseria spp . and Haemophilus influenzae . Hybridization experiments and immunoblot analysis of clinical EHEC isolates showed that EspP is widespread among EHEC of the serogroup O157 and that it also exists in serogroup O26. A specific immune response against EspP was detected in sera from patients suffering from EHEC infections. Functional analysis showed that EspP is a protease capable of cleaving pepsin A and human coagulation factor V. Degradation of factor V could contribute to the mucosal haemorrhage observed in patients with haemorrhagic colitis.  相似文献   

9.
You YO  van der Donk WA 《Biochemistry》2007,46(20):5991-6000
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.  相似文献   

10.
Dipeptidyl peptidase IV (DPPIV) is an atypical serine protease that modifies the biological activities of certain chemokines and neuropeptides. In addition, human DPPIV, also known as the T-cell activation antigen CD26, binds adenosine deaminase (ADA) to the T-cell surface, thus protecting the T-cell from adenosine-mediated inhibition of proliferation. Mutations were engineered into DPPIV (five point, 16 single point and six deletion mutations) to examine the binding of ADA and 19 monoclonal antibodies. Deletions of C-terminal residues from the 738-residue extracellular portion of DPPIV showed that the 214 residues C-terminal to Ser552 were not required for ADA binding and that peptidase activity could be ablated by deletion of 20 residues from the C-terminus. Point mutations at either of two locations, Leu294 and Val341, ablated ADA binding. Binding by six anti-DPPIV antibodies that inhibited ADA binding was found to require Leu340 to Arg343 and Thr440/Lys441 but not the 214 residues C-terminal to Ser552. The 13 other antibodies studied bound to a truncated DPPIV consisting of amino acids 1-356. Therefore, the binding sites on DPPIV of ADA and antibodies that inhibit ADA binding are discontinuous and overlapping. Moreover, the 47 and 97 residue spacing of amino acids in these binding sites concords with their location on a beta propeller fold consisting of repeated beta sheets of about 50 amino acids.  相似文献   

11.
Two fibrinolytic enzymes (QK-1 and QK-2) purified from the supernatant of Bacillus subtilis QK02 culture broth had molecular masses of 42,000 Da and 28,000 Da, respectively. The first 20 amino acids of the N-terminal sequence are AQSVPYGISQ IKAPALHSQG. The deduced protein sequence and its restriction enzyme map of the enzyme QK-2 are different from those of other proteases. The enzyme QK-2 digested not only fibrin but also a subtilisin substrate, and PMSF inhibited its fibrinolytic and amidolytic activities completely; while QK-1 hydrolyzed fibrin and a plasmin substrate, and PMSF as well as aprotinin inhibited its fibrinolytic activity. These results indicated QK-1 was a plasmin-like serine protease and QK-2 a subtilisin family serine protease. Therefore, these enzymes were designated subtilisin QK. The sequence of a DNA fragment encoding subtilisin QK contained an open reading frame of 1149 base pairs encoding 106 amino acids for signal peptide and 257 amino acids for subtilisin QK, which is highly similar with that of a fibrinolytic enzyme, subtilisin NAT (identities 96.8%). Asp32, His64 and Ser221 in the amino acid sequence deduced from the QK gene are identical to the active site of nattokinase (NK) produced by B. subtilis natto.  相似文献   

12.
The protein Streptomyces subtilisin inhibitor, SSI, efficiently inhibits a bacterial serine protease, subtilisin BPN'. We recently demonstrated that functional change in SSI was possible simply by replacing the amino acid residue at the reactive P1 site (methionine 73) of SSI. The present paper reports the additional effect of replacing methionine 70 at the P4 site of SSI (Lys73) on inhibitory activity toward two types of serine proteases, trypsin (or lysyl endopeptidase) and subtilisin BPN'. Conversion of methionine 70 at the P4 site of SSI(Lys73) to glycine or alanine resulted in increased inhibitory activity toward trypsin and lysyl endopeptidase, while replacement with phenylalanine weakened the inhibitory activity toward trypsin. This suggests that steric hindrance at the P4 site of SSI(Lys73) is an obstacle for its binding with trypsin. In contrast, the same P4 replacements had hardly any effect on inhibitory activity toward subtilisin BPN'. Thus the subsite structure of subtilisin BPN' is tolerant to these replacements. This contrast in the effect of P4 substitution might be due to the differences in the S4 subsite structures between the trypsin-like and the subtilisin-like proteases. These findings demonstrate the importance of considering structural complementarity, not only at the main reactive site but also at subsites of a protease, when designing stronger inhibitors.  相似文献   

13.
Z Zhang  J Yang 《Mutation research》1992,280(4):279-283
The effects of 10 amino acids on sister-chromatid exchange (SCE) frequency in human peripheral blood lymphocytes (PBL) and six amino acids on the SCE frequency in root tip cells of Hordeum vulgare were studied. Alanine (Ala), glycine (Gly), phenylalanine (Phe), valine (Val), histidine (His) and serine (Ser) induced a significant increase in SCE in PBL but threonine (Thr), isoleucine (Ile), lysine (Lys) and arginine (Arg) did not. Ala, Gly, Thr, Ile and Val induced a significant increase in SCE in root tip cells of Hordeum vulgare but Lys did not. The effect of Lys and bromodeoxyuridine (BrdU) on SCE levels in PBL and the interaction between them were also studied. The results show that Lys can inhibit the SCE induced by BrdU.  相似文献   

14.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

15.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

16.
Yeast Saccharomyces cerevisiae KEX2 gene previously isolated, was characterized as the gene encoding a calcium-dependent endopeptidase required for processing of precursors of alpha-factor and killer toxin. In this study, we report the amino acid sequence of the KEX2 gene product deduced from nucleotide sequencing. Our results indicate that the KEX2 gene contains a 2,442-bp open reading frame encoding a polypeptide of 814 amino acids. The deduced amino acid sequence contains a region extensively homologous to the members of subtilisin-like serine protease family near the N-terminus. A putative membrane-spanning domain near the C-terminus was also detected. These facts indicate that the KEX2-encoded protein may function as a membrane-bound, subtilisin-like serine protease.  相似文献   

17.
We investigated the enzymatic properties of a serralysin-type metalloenzyme, provisionally named as protease B, which is secreted by Xenorhabdus bacterium, and probably is the ortholog of PrA peptidase of Photorhabdus bacterium. Testing the activity on twenty-two oligopeptide substrates we found that protease B requires at least three amino acids N-terminal to the scissile bond for detectable hydrolysis. On such substrate protease B was clearly specific for positively charged residues (Arg and Lys) at the P1 substrate position and was rather permissive in the others. Interestingly however, it preferred Ser at P1 in the oligopeptide substrate which contained amino acids also C-terminal to the scissile bond, and was cleaved with the highest k(cat)/K(M) value. The pH profile of activity, similarly to other serralysins, has a wide peak with high values between pH 6.5 and 8.0. The activity was slightly increased by Cu(2+) and Co(2+) ions, it was not sensitive for serine protease inhibitors, but it was inhibited by 1,10-phenanthroline, features shared by many Zn-metalloproteases. At the same time, EDTA inhibited the activity only partially even either after long incubation or in excess amount, and Zn(2+) was inhibitory (both are unusual among serralysins). The 1,10-phenanthroline inhibited activity could be restored with the addition of Mn(2+), Cu(2+) and Co(2+) up to 90-200% of its original value, while Zn(2+) was inefficient. We propose that both the Zn inhibition of protease B activity and its resistance to EDTA inhibition might be caused by an Asp in position 191 where most of the serralysins contain Asn.  相似文献   

18.
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30‐amino‐acid‐long signal peptide, a 51.2 kDa amino‐terminal secreted passenger domain and a 50.1 kDa carboxyl‐terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF‐κB‐driven promoters through protease‐activated receptor (PAR)‐1, ‐2 or ‐4 and induces IL‐8 production through PAR‐2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR‐1, ‐2 and ‐4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.  相似文献   

19.
l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.  相似文献   

20.
Human fibrinogen was phosphorylated by casein kinase TS. The [32P]phosphate incorporated varied between 0.5 and 1 mol of phosphate per mole of fibrinogen. The phosphate was localized to Ser523 and Ser590 and serine and threonine residues between amino acids 259 and 268 in the A alpha-chain. In addition, Thr416 and Ser420 were phosphorylated in the gamma'-chain, which is a variant of the gamma-chain, constituting 7-10% of the gamma-chain population. The functional significance of casein kinase TS-induced phosphorylation of fibrinogen remains unknown; however, a slight but consistent increase of the turbidity in a gelation assay was observed for phosphorylated compared to unphosphorylated fibrinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号