首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake and processing of liposomal phospholipids by Kupffer cells in vitro   总被引:5,自引:0,他引:5  
We investigated the intracellular metabolic fate of [Me-14C]choline-labeled phosphatidylcholines and sphingomyelin taken up by rat Kupffer cells in maintenance culture during interaction with large unilamellar liposomes composed of cholesterol, labeled choline-phospholipid and phosphatidylserine (molar ration 5:4:1). With both labeled compounds only small proportions of water-soluble radioactivity were found to accumulate in the cells and in the culture medium, suggesting limited phospholipid degradation. However, after a lag period of 30 min progressively increasing proportions of cell-associated liposomal phospholipid were found to be converted to cellular phospholipid, nearly all of which was phosphatidylcholine. This conversion as well as the limited release of water-soluble label from the cells was inhibited by the lysosomotropic agents ammonium chloride and chloroquine. With [Me-14C]choline-labeled lysophosphatidylcholine, label was found to become cell-associated far in excess of an encapsulated liposomal label, [3H]inulin. Without a lag period virtually all of this was rapidly converted to phosphatidylcholine, a process which was not inhibited by the lysosomotropic agents. It is concluded that Kupffer cells, after endocytosis of liposomes, degrade the liposomal phospholipids effectively but reutilize the choline moiety for de novo synthesis of cellular phosphatidylcholine.  相似文献   

2.
125I-labeled albumin or poly(vinyl pyrrolidone) encapsulated in intermediate size multilamellar or unilamellar liposomes with 30–40% of cholesterol were injected intravenously into rats. In other experiments liposomes containing phosphatidyl[Me-14C]choline were injected. 1 h after injection parenchymal or non-parenchymal cells were isolated. Non-parenchymal cells were separated by elutriation centrifugation into a Kupffer cell fraction and an endothelial cell fraction. From the measurements of radioactivities in the various cell fractions it was concluded that the liposomes are almost exclusively taken up by the Kupffer cells. Endothelial cells did not contribute at all and hepatocytes only to a very low extent to total hepatic uptake of the 125I-labels. Of the 14C-label, which orginates from the phosphatidylcholine moiety of the liposomes, much larger proportions were recovered in the hepatocytes. A time-dependence study suggested that besides the involvement of phosphatidylcholine exchange between liposomes and high density lipoprotein, a process of intercellular transfer of lipid label from Kupffer cells to the hepatocytes may be involved in this phenomenon. Lanthanum or gadolinium salts, which effectively block Kupffer cell activity, failed to accomplish an increase in the fraction of liposomal material recovered in the parenchymal cells. This is compatible with the notion that liposomes of the type used in these experiments have no, or at most very limited, access to the liver parenchyma following their intravenous administration to rats.  相似文献   

3.
We investigated the intrahepatic distribution of small unilamellar liposomes injected intravenously into rats at a dose of 0.10 mmol of lipid per kg body weight. Sonicated liposomes consisting of cholesterol/sphingomyelin (1:1), (A); cholesterol/egg phosphatidylcholine (1:1), (B); cholesterol/sphingomyelin/phosphatidylserine (5:4:1), (C) or cholesterol/egg-phosphatidylcholine/phosphatidylserine (5:4:1), (D) were labeled by encapsulation of [3H]inulin. The observed differences in rate of blood elimination and hepatic accumulation (A much less than B approximately equal to C less than D) confirmed earlier observations and reflected the rates of uptake of the four liposome formulations by isolated liver macrophages in monolayer culture. Fractionation of the liver into a parenchymal and a non-parenchymal cell fraction revealed that 80-90% of the slowly clearing type-A liposomes were taken up by the parenchymal cells while of the more rapidly eliminated type-B liposomes even more than 95% was associated with the parenchymal cells. Incorporation of phosphatidylserine into the sphingomyelin-based liposomes caused a significant increase in hepatocyte uptake but a much more substantial increase in non-parenchymal cell uptake, resulting in a major shift of the intrahepatic distribution towards the non-parenchymal cell fraction. For the phosphatidylcholine-based liposomes incorporation of phosphatidylserine did not increase the already high uptake by the parenchymal cells while uptake by the non-parenchymal cells was only moderately elevated; this resulted in only a small shift in distribution towards the non-parenchymal cells. The phosphatidylserine-induced increase in liposome uptake by non-parenchymal liver cells was paralleled by an increase in uptake by the spleen. Fractionation of the non-parenchymal liver cells in a Kupffer cell fraction and an endothelial cell fraction showed that even for the slowly eliminated liposomes of type A endothelial cells do not participate to a measurable extent in the elimination process, thus excluding involvement of fluid-phase pinocytosis in the uptake process.  相似文献   

4.
We compared the metabolic fate of [3H]cholesteryl[14C]oleate, [3H]cholesteryl hexadecylether, 125I-labeled bovine serum albumin and [3H]inulin as constituents of large immunoglobulin-coupled unilamellar lipid vesicles following their internalization by rat liver macrophages (Kupffer cells) in monolayer culture. Under serum-free conditions, the cholesteryl oleate that is taken up is hydrolyzed, for the greater part, within 2 h. This occurs in the lysosomal compartment as judged by the inhibitory effect of the lysosomotropic agents monensin and chloroquin. After hydrolysis, the cholesterol moiety is accommodated in the cellular pool of free cholesterol and the oleate is reutilized for the synthesis mainly of phospholipids and, to a lesser extent of triacylglycerols. During incubation in plasma, however, substantial proportions of both the cholesterol and the oleate are shed from the cells, predominantly in the unesterified form. When the liposomes are labeled with the cholesteryl ester analog [3H]cholesteryl hexadecylether only a very small fraction of the label is released from the cells, even in the presence of plasma. Similar to the label remaining associated with the cells, the released label is identified in that case as unchanged cholesteryl ether. The liposomal aqueous phase marker 125I-labeled bovine serum albumin is also readily degraded intralysosomally and the radioactive label is rapidly released from the cells in a trichloroacetic acid-soluble form. Also, as much as 20% of the aqueous phase marker [3H]inulin that becomes cell-associated during a 2-h incubation with inulin-containing liposomes, is released from the cells during a subsequent 4-h incubation period in medium or rat plasma. The usefulness of the various liposomal labels as parameters of liposome uptake and intracellular processing is discussed.  相似文献   

5.
Incorporation of 8 mol% lactosylceramide in small unilamellar vesicles consisting of cholesterol, dimyristoylphosphatidylcholine and phosphatidylserine in a molar ratio of 5:4:1 and containing [3H]inulin as an aqueous-space marker resulted in a 3-fold decreased half-life of the vesicles in blood and a corresponding increase in liver uptake after intracardial injection into rats. The increase in liver uptake was mostly accounted for by an enhanced uptake in the parenchymal cells, while the uptake by the non-parenchymal cells was only slightly increased. The uptake of both the control and the glycolipid-containing vesicles by the non-parenchymal cell fraction could be attributed completely to the Kupffer cells; no radioactivity was found in the endothelial cells. The effect of lactosylceramide on liver uptake and blood disappearance of the liposomes was effectively counteracted by desialylated fetuin, injected shortly before the liposome dose. This observation supports the notion that a galactose-specific receptor is involved in the liver uptake of lactosylceramide liposomes.  相似文献   

6.
The uptake and metabolism of chylomicron-remnant lipids by individual liver cell types was examined by incubating remnants with monolayer cultures of hepatocytes, Kupffer cells, and endothelial cells from rat liver. Remnants were prepared in vitro from radiolabelled mesenteric-lymph chylomicra, utilizing either purified lipoprotein lipase from bovine milk, or plasma isolated from heparinized rats. The resulting particles contained [3H]phosphatidylcholine and cholesterol, and [14C]oleate in the acylglycerol, phospholipid, fatty-acid and cholesterol-ester fractions. The capacities of the three cell types for uptake of both [3H]lipids and [14C]lipids were determined to be, on a per-cell basis, in the order: Kupffer greater than hepatocytes greater than endothelial. The relative proportions of [3H]phospholipid and total [3H]cholesterol taken up by hepatocytes and non-parenchymal cells remained constant with time. The uptake of [14C]oleoyl lipids by all three cell types was slightly greater than that of the total [3H]cholesterol and [3H]phospholipid components. There was evidence of cholesterol-ester hydrolysis and turnover of [14C]oleate in the phospholipid fraction in hepatocytes and Kupffer cells, but not endothelial cells, over the first 2 h. With both remnant preparations, these observations indicate that significant differences exist between the three major liver cell types with respect to the uptake and metabolism of remnant lipid components.  相似文献   

7.
We studied the effect of fetal calf serum and serum protein fractions on the interaction of phospholipid vesicles consisting of phosphatidylcholine, cholesterol and dicetylphosphate (molar ratio 7 : 2 : 1), with rat liver parenchymal cells in a primary monolayer culture. During incubation of such vesicles with fetal calf serum part of the labeled phosphatidylcholine is transferred to a lipoprotein particle similar to the one we identified previously as a derivative of high density lipoprotein (Scherphof, G., Roerdink, F.H., Waite, M. and Parks, J. (1978) Biochim. Biophys. Acta 542, 296–307). When the particle thus formed is incubated with the cells a transfer of the phospholipid label to the cells is observed. When vesicles are incubated with the cells in presence of serum such lipoprotein-mediated lipid transfer may conceivably contribute to the total lipid uptake observed. However, we found that the presence of fetal calf serum in the culture medium greatly diminished rather than increased the total transfer of liposomal lipid to the cells. Also bovine serum albumin and bovine β-globulins reduced this transfer, although to a lesser extent than whole serum. α-Globulins, on the other hand, were as effective as complete serum in reducing the uptake of liposomal phospholipid. A γ-globulin fraction failed to exhibit any effect on the uptake of [14C]phosphatidylcholine by the cells.All protein fractions which were able to inhibit cellular uptake of liposomal phospholipid were shown to bind to the phospholipid vesicles. Furthermore, lipid vesicles preincubated with fetal calf serum and then separated from it showed reduced transfer of labeled phosphatidylcholine to parenchymal cells.These observations were taken to suggest that the diminished uptake of liposomal lipid may be caused by a modification of the liposomal surface membrane as a result of the binding of certain serum proteins. On the other  相似文献   

8.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for applications in vivo. Multilamellar liposomes (phosphatidylcholine 70:dicetyl phosphate 20: cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 ± 3% of [14C]inulin and 27 ± 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 ± 5%/h and 17 ± 2%/h, respectively, after treatment with decomplemented serum (56°C, 30 min). Loss induced by serum was concentration and time dependent: to 57 ± 2% at 1 h and 67 ± 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14C]-inulin in the presence of 10% serum was reduced to 12 ± 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 ± 7%/h. Both small and large unilamellar vesicles could not be stabilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

9.
Incorporation of 8 mol percent lactosylceramide into small unilamellar vesicles consisting of cholesterol and sphingomyelin in an equimolar ratio and containing [3H]inulin as a marker resulted in an increase in total liver uptake and a drastic change in intrahepatic distribution of the liposomes after intravenous injection into rats. The control vesicles without glycolipid accumulated predominantly in the hepatocytes, but incorporation of the glycolipid resulted in a larger stimulation of Kupffer-cell uptake (3.2-fold) than of hepatocyte uptake (1.2-fold). Liposome preparations both with and without lactosylceramide in which part of the sphingomyelin was replaced by phosphatidylserine, resulting in a net negative charge of the vesicles, were cleared much more rapidly from the blood and taken up by the liver to higher extents. The negative charge had, however, no influence on the intrahepatic distributions. The fast hepatic uptake of the negatively charged liposomes allowed competition experiments with substrates for the galactose receptors on liver cells. Inhibition of blood clearance and liver uptake of lactosylceramide-containing liposomes by N-acetyl-d-galactosamine indicated the involvement of specific recognition sites for the liposomal galactose residues. This inhibitory effect of N-acetyl-d-galactosamine was shown to be mainly the result of a decreased liposome uptake by the Kupffer cells, compatible with the reported presence of a galactose specific receptor on this cell type (Kolb-Bachofen et al. (1982) Cell 29, 859–866). The difference between the results on sphingomyelin-based liposomes as described in this paper and those on phosphatidylcholine-based liposomes as published previously (Spanjer and Scherphof (1983) Biochim. Biophys. Acta 734, 40–47) are discussed.  相似文献   

10.
The interactions of mouse thymocytes with unilamellar phospholipid vesicles comprised of dimyristyl lecithin (DML), dipalmitoyl lecithin (DPL), dioleoyl lecithin (DOL), and egg yolk lecithin (EYL) were examined in vitro.

In cells treated with [3H]DML or [3H]DPL vesicles, electron microscope (EM) autoradiographic analysis showed most of the radioactive lipids to be confined to the cell surface. Transmission EM studies showed the presence of intact vesicles (DPL) and collapsed or ruptured vesicle fragments (DML) adsorbed to the surfaces of treated cells. In cells treated with DPL vesicles containing a watersoluble dye (6-carboxyfluorescein; 6-CF), most of the fluorescent vesicles were localized at the periphery of the treated cells. Furthermore, substantial fractions of the cell-associated DPL and DML could be released by a mild trypsinization without damaging the cells. These results suggest that the uptake of DML and DPL is primarily due to vesicle-cell adsorption. Such an adsorption process appears to be enhanced at or below the thermotropic-phase transition temperature of the vesicle lipid. Under certain conditions these adherent vesicles also formed patches or caps on the cell surface.

In cells treated with DOL or EYL vesicles, transmission EM and EM autoradiography showed relatively little exogenous vesicle lipid located at the cell surface. Thymocytes incubated (37°C) with [14C] EYL vesicles containing a trapped marker, [3H]inulin, incor porated both isotopes at identical rates. In separate experiments it was found that this marker was located inside the treated cells. Thymocytes treated with DOL vesicles containing 6-CF exhibited a uniform and diffuse distribution of dye in the internal volume of the cells. Little cell-associated EYL or DOL could be released by trypsinization. Evidence against endocytosis of intact vesicles as a major pathway of vesicle uptake is also presented. These observations, coupled with the demonstration of vesicle-cell lipid exchange as a minor component of vesicle uptake suggest that incorporation of EYL and DOL vesicles by thymocytes is primarily by vesicle-cell fusion.  相似文献   

11.
The metabolism of [stearoyl-1-14C]- and [choline-methyl-14C]sphingomyelin, [stearoyl-1-14C]ceramide-1-phospho-N,N-dimethylethanolamine (demethylsphingomyelin) and [choline-methyl-14C]phosphatidylcholine was measured 1, 3 and 5 days after uptake from the media of cultured skin fibroblasts. This was done to measure the relative contributions of lysosomal sphingomyelinase and plasma membrane phosphocholine transferase on the metabolism of sphingomyelin, a component of all cell membranes. By using cell lines from controls and from patients with Niemann-Pick disease and other lysosomal storage diseases, it was concluded that a significant portion (10-15%) of the observed degradation of sphingomyelin is due to exchange of the phosphocholine moiety producing phosphatidylcholine. Although cell lines from type A and B Niemann-Pick disease have only 0-2% of lysosomal sphingomyelinase activity measured in vitro, three cell lines from type B Niemann-Pick disease could metabolize 54.4% of the labeled sphingomyelin by day 3 while cell lines from type A Niemann-Pick disease could only metabolize 18.5% by day 3. This compares to 86.7% metabolized in control cells by day 3. Cells from one patient with juvenile Niemann-Pick disease and one with type D Niemann-Pick disease metabolized sphingomyelin normally while cells from two other patients with juvenile or type C Niemann-Pick disease could only metabolize 58.2% by day 3. Cells from patients with I-cell disease and 'lactosylceramidosis' also demonstrated decreased metabolism of sphingomyelin (55.1 and 54.9% by day 3, respectively). Cells from the patient with Farber disease accumulated [14C]stearic acid-labeled ceramide produced from [14C]sphingomyelin. Studies with choline-labeled sphingomyelin and phosphatidylcholine demonstrated that phosphocholine exchange takes place in either direction in the cells, and this is normal in Niemann-Pick disease. Studies in cells from patients with all clinical types of sphingomyelinase deficiency have led to new methods for diagnosis and prognosis and to a better understanding of sphingomyelin metabolism.  相似文献   

12.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

13.
Interaction of liposomes with Kupffer cells in vitro   总被引:6,自引:0,他引:6  
We investigated the interaction of liposomes with rat Kupffer cells in monolayer maintenance culture. The liposomes (large unilamellar vesicles, LUV) were composed of 14C-labelled phosphatidylcholine, cholesterol and phosphatidylserine (molar ratio 4:5:1) and contained either 3H-labelled inulin or 125I-labelled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. After 2-3 days in culture the cells exhibited optimal uptake capacity. The uptake process showed saturation kinetics, maximal uptake values amounting to 2 nmol of total liposomal lipid/h/10(6) cells. This is equivalent to 1500 vesicles per cell. The presence of fetal calf serum (FCS) during incubation increased uptake nearly two-fold, whereas freshly isolated rat serum had no effect. The binding of the liposomes to the cells caused partial release of liposomal contents (about 15-20%) both at 4 degrees C and at 37 degrees C. In the presence of metabolic inhibitors the uptake at 37 degrees C was reduced to about 20% of the control values. Inulin and lipid label became cell-associated at similar rates and extents, whereas the association of albumin label gradually decreased after attaining a maximum at relatively low values. When, after 1 h incubation, the liposomes were removed continued incubation for another 2 h in absence of liposomes led to an approx. 30% release of cell-associated lipid label into the medium in water-soluble form. Under identical conditions as much as 90% of the cell-associated albumin label was released in acid-soluble form. Contrarily, the inulin label remained firmly cell-associated under these conditions. From these results we conclude that Kupffer cells in monolayer culture take up liposomes primarily by way of an adsorptive endocytic mechanism. This conclusion was confirmed by morphological observations on cells incubated with liposomes containing fluorescein isothiocyanate (FITC) dextran or horseradish peroxidase as markers for fluorescence microscopy and electron microscopy, respectively.  相似文献   

14.
Embryonic chick spinal cord neurons grown in dissociated cell culture have a high affinity uptake mechanism for choline. We find that, in addition to acetylcholine synthesis, the accumulated choline is used for the synthesis of metabolites such as lipids that are retained in part by conventional fixation techniques. As a result autoradiographic methods can be used to identify the cells that have the uptake mechanism in spinal cord cultures. About 60% of the neurons are labeled by [3H]choline uptake in cultures prepared with spinal cord cells from 4-day-old embryos, and about 40% are labeled in cultures prepared with cord cells from 7-day-old embryos. Neurons that innervate skeletal myotubes in spinal cord-myotube cultures are consistently labeled by [3H]choline uptake. Neurons unlabeled by the procedure are viable: they exclude the dye trypan blue and accumulate 14C-amino acids for protein synthesis. Most of the neurons unlabeled by [3H]choline uptake can instead be labeled by uptake of γ-[3H]aminobutyric acid, and vice versa. These results suggest that high affinity choline uptake can be used to label cholinergic neurons in cell culture, and that at least some populations of noncholinergic neurons are not labeled by the procedure. It cannot yet be concluded, however, that all labeled neurons are cholinergic since more labeled neurons are obtained per cord than would be expected from the number of neurons making up identified cholinergic populations in vivo. A three- to fourfold increase in the amount of high affinity choline uptake is observed between Days 3 and 15 in culture for spinal cord cells obtained from 4-day-old embryos. The number of [3H]choline-labeled neurons in such cultures decreases slightly during the same period, suggesting that the increase in uptake reflects neuronal growth or development rather than an increase in population size. Both the magnitude of the uptake and the number of [3H]choline-labeled neurons are the same for spinal cord cells grown with and without skeletal myotubes.  相似文献   

15.
We examined the interaction of glycolipid-containing phospholipid vesicles with rat hepatocytes in vitro. Incorporation of either N-lignoceroyldihydrolactocerebroside or the monosialoganglioside, GM1, enhanced liposomal lipid uptake 4–5-fold as judged by the uptake of radioactive phosphatidylcholine as a vesicle marker. Cerebroside enhanced phospholipid uptake only when incorporated into dimyristoyl, but not into egg phosphatidylcholine vesicles. The lack of cerebroside effect in egg phosphatidylcholine-containing vesicles appeared to be due to a limited exposure of the carbohydrate part of the glycolipid as suggested by the reduced agglutinability of those vesicles by Ricinus communis agglutinin.In contrast to the results with radioactive phosphatidylcholine, we observed only a 20% increase in vesicle-cell association as a result of glycolipid incorporation, when a trace amount of [14C]cholesteryloleate served as a marker of the liposomal lipids or when using the fluorescent dye, carboxyfluorescein, as a marker of the aqueous space of the vesicles. By the same token, intracellular delivery of vesicle-contents was only slightly enhanced (approx. 10%).The discrepancy between the association with the cells of phosphatidylcholine on the one hand and cholesteryoleate or entrapped marker on the other suggests different mechanisms of uptake for these markers. Our results are compatible with the notion that the main effect of incorporation of glycolipids into the vesicles is the enhancement of exchange or transfer of phospholipid molecules between vesicles and cells. Incubation of the cells with galactose or lactose, prior to addition of vesicles, suggests that this enhanced phospholipid exchange or transfer involves specific recognition of the terminal galactose residues of the glycolipid vesicles by a receptor present on the plasma membranes of hepatocytes.  相似文献   

16.
In order to assess the relative importance of the receptor for low-density lipoprotein (LDL) (apo-B,E receptor) in the various liver cell types for the catabolism of lipoproteins in vivo, human LDL was labelled with [14C]sucrose. Up to 4.5h after intravenous injection, [14C]sucrose becomes associated with liver almost linearly with time. During this time the liver is responsible for 70-80% of the removal of LDL from blood. A comparison of the uptake of [14C]sucrose-labelled LDL and reductive-methylated [14C]sucrose-labelled LDL ([14C]sucrose-labelled Me-LDL) by the liver shows that methylation leads to a 65% decrease of the LDL uptake. This indicated that 65% of the LDL uptake by liver is mediated by a specific apo-B,E receptor. Parenchymal and non-parenchymal liver cells were isolated at various times after intravenous injection of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL. Non-parenchymal liver cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells when expressed per mg of cell protein. This factor is independent of the time after injection of LDL. Taking into account the relative protein contribution of the various liver cell types to the total liver, it can be calculated that non-parenchymal cells are responsible for 71% of the total liver uptake of [14C]sucrose-labelled LDL. A comparison of the cellular uptake of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL after 4.5h circulation indicates that 79% of the uptake of LDL by non-parenchymal cells is receptor-dependent. With parenchymal cells no significant difference in uptake between [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL was found. A further separation of the nonparenchymal cells into Kupffer and endothelial cells by centrifugal elutriation shows that within the non-parenchymal-cell preparation solely the Kupffer cells are responsible for the receptor-dependent uptake of LDL. It is concluded that in rats the Kupffer cell is the main cell type responsible for the receptor-dependent catabolism of lipoproteins containing only apolipoprotein B.  相似文献   

17.
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells.  相似文献   

18.
LIPID COMPOSITION AND METABOLISM OF CULTURED HAMSTER BRAIN ASTROCYTES   总被引:1,自引:1,他引:0  
Abstract— The lipid composition and metabolism of confluent cultures of cells derived from newborn hamster brain and having morphology characteristic of immature astrocytes or spongioblasts was investigated and compared to that of newborn hamster brain dispersions and cloned glioma cells (C6). The cells displayed stable morphology for at least 30 subcultures; thereafter spontaneous transformation occurred. No appreciable changes were observed in either composition or metabolic characteristics of any major neutral lipid or phospholipid class in successive subcultures or following transformation. The overall lipid composition of the hamster astrocyte cultures closely resembled that of newborn hamster brain, but the phospholipid composition showed substantial differences. The cells contained as a percent of lipid P relatively more ethanolamine plasmalogen, choline plasmalogen and sphingomyelin and somewhat less phosphatidylcholine and phosphatidylethanolamine. The phospholipids of the hamster astrocyte and C6 cells were similar. Of the lipid precursors examined, [U-14C]glucose was incorporated best into all preparations. C6 glioma cells incorporated both [U-14C]glucose and [1-14C]acetate most actively. From 69–88% of 32P incorporated into hamster astrocyte phospholipids was present in choline phosphoglycerides, whereas the corresonding figure for hamster brain dispersions was 53%. The ratio of specific activities of phosphatidylcholine to phosphatidylinositol was substantially higher in the cultured cells than in the brain preparations. The small pool of choline plasmalogen in the hamster astrocytes usually achieved the highest specific activity of any phospholipid. When [U-14C]glucose and [1-14C]acetate were precursors, the bulk of label in the astrocytes appeared in choline phosphoglycerides and triacyglycerol. Our results indicate that the hamster astrocyte cell line as grown expresses distinctive features of lipid composition and metabolism which are nearly constant through many generations.  相似文献   

19.
Endocytosis of [125I]iodixanol was studied in vivo and in vitro in rat liver cells to determine fluid phase endocytic activity in different liver cells (hepatocytes, Kupffer cells and endothelial cells). The Kupffer cells were more active in the uptake of [l25I]iodixanol than parenchymal cells or endothelial cells. Inhibition of endocytic uptake via clathrin-coated pits (by potassium depletion and hypertonic medium) reduced uptake of [125I]iodixanol much more in Kupffer cells and endothelial cells than in hepatocytes. To gain further information about the importance of clathrin-mediated fluid phase endocytosis, the expression of proteins known to be components of the endocytic machinery was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting, endothelial cells and Kupffer cells were found to express approximately fourfold more rab4, rab5 and rab7 than parenchymal cells, while clathrin was expressed at a higher level in endothelial cells than in Kupffer cells and hepatocytes. Using electron microscopy it was shown that liver endothelial cells contained approximately twice as many coated pits per membrane unit than the parenchymal and Kupffer cells, thus confirming the immunoblotting results concerning clathrin expression. Electron microscopy on isolated liver cells following fluid phase uptake of horseradish peroxidase (HRP) showed that HRP-containing organelles had a different morphology in the different cell types: In the liver endothelial cells HRP was in small, tubular endosomes, while in Kupffer cells HRP was mainly found in larger structures, reminiscent of macropinosomes. Parenchymal cells contained HRP in small vacuolar endosomes with a punctuated distribution. In conclusion, we find that the Kupffer cells and the endothelial cells have a higher pinocytic activity than the hepatocytes. The hepatocytes do, however, account for most of the total hepatic uptake. The fluid phase endocytosis in liver endothelial cells depends mainly on clathrin-mediated endocytosis, while the parenchymal cells have additional clathrin-independent mechanisms that may play an important role in the uptake of plasma membrane components. In the Kupffer cells the major uptake of fluid phase markers seems to take place via a macropinocytic mechanism.  相似文献   

20.
The intracellular transport of mucus glycoprotein precursor (apomucin) from endoplasmic reticulum (ER) to Golgi was quantitated by the immunoprecipitation with 3G12 antimucin monoclonal antibody and by estimation of the apomucin glycosylation using UDP-[3H]galactose. The assembly of the entities carrying apomucin to Golgi was assessed by electron microscopy and by quantitation of the incorporation of [14C]choline, [14C]ethanolamine, and [14C]oleic acid into their lipids. The microscopic image of the isolated transport components revealed a population of 80- to 100-nm vesicles with occasional membranes of the ER used for their synthesis. On the average, the vesicles contained 82 ng apomucin/microgram of protein and 80-90% of the total incorporated lipid precursors. From that, 91% of [14C]choline was detected in phosphatidylcholine, and 9% in phosphatidylethanolamine, lysophosphatidylcholine, and sphingomyelin. With [14C]oleate, 54% of the label was incorporated into ceramide, diglyceride, and phosphatidic acid, 35% to phosphatidylcholine, 7% in phosphatidylethanolamine, and 2% in sphingomyelin. After incubation of the vesicles with Golgi, the apomucin was found glycosylated and the lipids of the transport vesicles incorporated into Golgi membranes. The fusion of the vesicular membranes was accompanied by the synthesis of sphingomyelin. In the Golgi, 39-55% of the radiolabeled phosphatidylcholine of transport vesicles was converted to sphingomyelin. The results indicate that the newly synthesized membranes of apomucin transporting vesicles are enriched in phosphoglycerides and ceramides. Upon fusion with the Golgi, the membranes of the vesicles are replenished with sphingomyelin by exchange reaction between phosphatidylcholine and ceramide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号