首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viral core proteins (p15, p26, p11, and p9) of equine infectious anemia virus (EIAV) (Wyoming strain) were purified by reverse-phase high-pressure liquid chromatography. Each purified protein was analyzed for amino acid content, N-terminal amino acid sequence, C-terminal amino acid sequence, and phosphoamino acid content. The results of N- and C-terminal amino acid sequence analysis of each gag protein, taken together with the nucleotide sequence of the EIAV gag gene (R. M. Stephens, J. W. Casey, and N. R. Rice, Science 231:589-594, 1986), show that the order of the proteins in the precursor is p15-p26-*-p11-p9, where a pentapeptide also found in the virus is represented by the asterisk. The data are in complete agreement with the predicted structure of the gag polyprotein and show the peptide bonds cleaved during proteolytic processing. The N-terminus of p15 is blocked to Edman degradation. The p11 protein is identical to the nucleic acid-binding protein of EIAV previously isolated (C. W. Long, L. E. Henderson, and S. Oroszlan, Virology 104:491-496, 1980). High-titer rabbit antiserum was prepared against each purified protein. These antisera were used to detect the putative gag precursor (Pr55gag) and intermediate cleavage products designated Pr49 (p15-p26-*-p11), Pr40 (p15-p26), and Pr35 (p26-*-p11) in the virus and in virus-infected cells. High-titer antisera to EIAV p15 and p26 showed cross-reactivity with the homologous protein of human T-cell lymphotropic virus type III/lymphadenopathy-associated virus.  相似文献   

2.
Chen C  Li F  Montelaro RC 《Journal of virology》2001,75(20):9762-9770
Previous studies utilizing Gag polyprotein budding assays with transfected cells reveal that the equine infectious anemia virus (EIAV) Gag p9 protein provides a late assembly function mediated by a critical Y(23)P(24)D(25)L(26) motif (L-domain) to release viral particles from the plasma membrane. To elucidate further the role of EIAV p9 in virus assembly and replication, we have examined the replication properties of a defined series of p9 truncation and site-directed mutations in the context of a reference infectious molecular proviral clone, EIAV(uk). Characterization of these p9 proviral mutants revealed new functional properties of p9 in EIAV replication, not previously elucidated by Gag polyprotein budding assays. The results of these studies demonstrated that only the N-terminal 31 amino acids of a total of 51 residues in the complete p9 protein were required to maintain replication competence in transfected equine cells; proviral mutants with p9 C-terminal truncations of 20 or fewer amino acids remained replication competent, while mutants with truncations of 21 or more residues were completely replication defective. The inability of the defective p9 proviral mutations to produce infectious virus could not be attributed to defects in Gag polyprotein expression or processing, in virion RT activity, or in virus budding. While proviral replication competence appeared to be associated with the presence of a K(30)K(31) motif and potential ubiquitination of the EIAV p9 protein, mutations of these lysine residues to methionines produced variant proviruses that replicated as well as the parental EIAV(uk) in transfected ED cells. Thus, these observations reveal for the first time that EIAV p9 is not absolutely required for virus budding in the context of proviral gene expression, suggesting that other EIAV proteins can at least in part mediate late budding functions previously associated with the p9 protein. In addition, the data define a function for EIAV p9 in the infectivity of virus particles, indicating a previously unrecognized role for this Gag protein in EIAV replication.  相似文献   

3.
4.
We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amino acid sequence homology between EIAV p9 and the functional homologs of RSV and HIV-1, we have now designed an EIAV Gag-mediated budding assay to define the late assembly (L) domain peptide sequences contained in the EIAV p9 protein. The results of these particle budding assays revealed that expression of EIAV Gag polyprotein in COS-1 cells yielded extracellular Gag particles with a characteristic density of 1.18 g/ml, while expression of EIAV Gag polyprotein lacking p9 resulted in a severe reduction in the release of extracellular Gag particles. The defect in EIAV Gag polyprotein particle assembly could be corrected by substituting either the RSV p2b or HIV-1 p6 protein for EIAV p9. These observations demonstrated that the L domains of EIAV, HIV-1, and RSV were interchangeable in mediating assembly of EIAV Gag particles in the COS-1 cell budding assay. To localize the L domain of EIAV p9, we next assayed the effects of deletions and site-specific mutations in the p9 protein on its ability to mediate budding of EIAV Gag particles. Analyses of EIAV Gag constructs with progressive N-terminal or C-terminal deletions of the p9 protein identified a minimum sequence of 11 amino acids (Q20N21L22Y23P24D25L26S27E28I29K30) capable of providing the late assembly function. Alanine scanning studies of this L-domain sequence demonstrated that mutations of residues Y23, P24, and L26 abrogated the p9 late budding function; mutations of other residues in the p9 L domain did not substantially affect the level of EIAV Gag particle assembly. These data indicate that the L domain in EIAV p9 utilizes a YXXL motif which we hypothesize may interact with cellular proteins to facilitate virus particle budding from infected cells.  相似文献   

5.
Polyacrylamide gel analysis of the structural proteins of three types of iridescent viruses (2, 6, and 9) demonstrated that the purified virions had one major and more than 20 minor polypeptides. Surface labeling procedures performed on pure intact virions, using 125I in the presence of lactoperoxidase and chloramine T (at low iodine concentrations), demonstrated that the major and two or three minor polypeptides were located on the outside. The major structural polypeptide was isolated from each virus type by preparative polyacrylamide gel electrophoresis. Amino acid analysis indicated that this protein was very similar in the three iridescent viruses. The three polypeptides had an identical N terminal (proline). While the major polypeptide of each virus has a slightly different molecular weight as determined by polyacrylamide gel electrophoresis, the similarities in iodine labeling, N terminals, and amino acids suggests a common function for this protein.  相似文献   

6.
Jin S  Chen C  Montelaro RC 《Journal of virology》2005,79(14):8793-8801
We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral mutant (K30) with two fewer amino acids produced replication-defective virus particles, despite containing apparently normal levels of processed Gag and Pol proteins (C. Chen, F. Li, and R. C. Montelaro, J. Virol. 75:9762-9760, 2001). Based on these observations, we sought in the current study to identify the precise defect in K30 virion infection of permissive equine dermal (ED) cells. The results of these experiments clearly demonstrated that K30 virions entered target ED cells and produced early (minus-strand strong-stop) and late (Gag) viral DNA products as efficiently as did the replication-competent E32 mutant and parental EIAV(UK) viruses. However, in contrast to the replication-competent E32 mutant and parental viruses, infection with K30 mutant virus failed to produce detectable two-long-terminal-repeat DNA circles, stable integrated provirus, virus-specific Gag mRNA expression, or intracellular viral protein expression. Taken together, these data demonstrate that the K30 mutant is defective in the ability to produce sufficient nuclear viral DNA to establish a productive infection in ED cells. Thus, these observations indicate for the first time that the EIAV Gag p9 protein performs a critical role in viral DNA production and processing to provirus during EIAV infection, in addition to its previously defined role in viral budding mediated by the p9 L domain.  相似文献   

7.
The synthesis and processing of feline leukemia virus (FeLV) polypeptides were studied in a chronically infected feline thymus tumor cell line, F-422, which produces the Rickard strain of FeLV. Immune precipitation with antiserum to FeLV p30 and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to isolate intracellular FeLV p30 and possible precursor polypeptides. SDS-PAGE of immune precipitates from cells pulse-labeled for 2.5 min with [35S]methionin revealed the presence of a 60,000-dalton precursor polypeptide (Pp60) as well as a 30,000-dalton polypeptide. When cells were grown in the presence of the proline analogue L-azetidine-2-carboxylic acid, a 70,000-dalton precursor polypeptide (Pp70) was found in addition to Pp60 after a 2.5-min pulse. The cleavage of Pp60 could be partially inhibited by the general protease inhibitor phenyl methyl sulfonyl fluoride (PMSF). This partial inhibition was found to occur only if PMSF was present during pulse-labeling. Intracellular Pp70 and Pp60 and FeLV virion p70, p30, p15, p11, and p10 were subjected to tryptic peptide analysis. The results of this tryptic peptide analysis demonstrated that intracellular Pp70 and virion p70 were identical and that both contained the tryptic peptides of FeLV p30, p15, p11, and p10. Pp60 contained the tryptic peptides of FeLV P30, P15, and P10, but lacked the tryptic peptides of P11. The results of pactamycin gene ordering experiments indicated that the small structural proteins of FeLV are ordered p11-p15-p10-p30. The data indicate that the small structural proteins of FeLV are synthesized as part of a 70,000-dalton precursor. A cleavage scheme for the generation of FeLV p70, p30, p15, p11, and p10 from precursor polypeptides is proposed.  相似文献   

8.
Antibodies to disrupted murine sarcoma-leukemia virus (MSV[MLV]) were used to study the synthesis of viral polypeptides in the transformed, virus-producing rat cell line 78A1. When cultures were labeled for 10 min with radioactive amino acids, about 9% of the total labeled proteins were precipitated with antiserum against purified MSV(MLV), and 3 to 4% were precipitated with the same antiserum after it had been absorbed with an extract from uninfected rat cells. The difference is due to the presence in the unabsorbed antiserum of antibodies to cellular proteins that are present in purified virus preparations. Intracellular viral proteins labeled with radioactive amino acids were isolated by immunoprecipitation and analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The mobilities of intracellular viral polypeptides were identical to those of the purified virion. However, labeled polypeptides having electrophoretic mobilities lower than that of the major virion polypeptide, the group-specific antigen of molecular weight 31,000, were present in higher proportion in the total cell extract and in the membrane fraction than in the virion. These polypeptides appear to be of cellular origin for they were present only in minute amounts in the immunoprecipitates obtained with the absorbed serum. After a 10-min labeling period, radioactive proteins were assembled into extracellular virions rapidly for the first 4 hr followed by a slower rate. More than 2% of the total proteins of the cell labeled in a 10-min pulse were assembled into virions at the completion of a 24-hr chase. The high-molecular-weight polypeptides with the same mobilities as those detected in the immunoprecipitate of intracellular proteins were found in virions released from cells after a 10-min pulse. A larger proportion of these high-molecular-weight proteins was detected in virions released after short chase periods (30-120 min) than after longer chase periods (6-24 hr). Two possible interpretations of these data are that the high-molecular-weight cell-derived polypeptides (i) have a turnover rate higher than that of the major virion polypeptides or (ii) are cleaved proteolytically from the virions during long incubation in the culture media.  相似文献   

9.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

10.
Herpesvirus saimiri particles were purified from productively infected owl monkey kidney cell cultures, and the virion polypeptides were analyzed by polyacrylamide gel electrophoresis. A total of 21 predominant proteins were found in lysates of H. saimiri 11 particles by Coomassie blue staining or by [35S]methionine labeling and autoradiography; all proteins were between 160,000 and 12,000 daltons in size. They are most probably virion constituents, as most of them were precipitated by immune sera, and no dominant proteins of equivalent sizes were found in mock-infected cultures. Four glycoproteins (gp 155/160, gp 128, gp 84/90, gp 55) and three polypeptides that appeared not to be glycosylated (p71, p35, p28) were assigned to the envelope or matrix of virions, whereas at least four phosphoproteins (pp132, pp118, pp55, pp13) and ten polypeptides without apparent secondary modification (p155/160, p106, p96, p67, p53, p36, p32, p15, p14, p12) were found in the nucleocapsid fraction. Analysis of virion proteins from different H. saimiri strains did not reveal appreciable differences in the migration behavior of most polypeptides, including all glycoproteins; however, determination of a strain-specific size pattern was possible for three of four phosphoproteins. The overall similarity in protein architecture of H. saimiri strains obviously does not reflect the variability in biology, such as oncogenic properties. In comparison, DNA sequence divergences appear to remain a better taxonomic criterion for strain distinction.  相似文献   

11.
The proline-rich L domains of human immunodeficiency virus 1 (HIV-1) and other retroviruses interact with late endocytic proteins during virion assembly and budding. In contrast, the YPDL L domain of equine infectious anemia virus (EIAV) is apparently unique in its reported ability to interact both with the mu2 subunit of the AP-2 adaptor protein complex and with ALG-2-interacting protein 1 (AIP1/Alix) protein factors involved in early and late endosome formation, respectively. To define further the mechanisms by which EIAV adapts vesicle trafficking machinery to facilitate virion production, we have examined the specificity of EIAV p9 binding to endocytic factors and the effects on virion production of alterations in early and late endocytic protein expression. The results of these studies demonstrated that (i) an approximately 300-residue region of AIP1/Alix-(409-715) was sufficient for binding to the EIAV YPDL motif; (ii) overexpression of AIP1/Alix or AP-2 mu2 subunit specifically inhibited YPDL-mediated EIAV budding; (iii) virion budding from a replication-competent EIAV variant with its L domain replaced by the HIV PTAP sequence was inhibited by wild type or mutant mu2 to a level similar to that observed when a dominant-negative mutant of Tsg101 was expressed; and (iv) overexpression or siRNA silencing of AIP1/Alix and AP-2 revealed additive suppression of YPDL-mediated EIAV budding. Taken together, these results indicated that both early and late endocytic proteins facilitate EIAV production mediated by either YPDL or PTAP L domains, suggesting a comprehensive involvement of endocytic factors in retroviral assembly and budding that can be accessed by distinct L domain specificities.  相似文献   

12.
Structural Proteins of Simian Virus 40   总被引:17,自引:15,他引:2       下载免费PDF全文
Sodium dodecyl sulfate acrylamide gel electrophoresis of the solubilized proteins from purified simian virus 40 (SV40) virions revealed two major and two minor structural polypeptide components. The major components which comprise over 75% of the total virion were shown to be the capsid proteins by immunological and isoelectric focusing fractionation analysis. These two polypeptides have estimated molecular weights of 45,000 daltons as determined by gel electrophoresis. One of the two minor components was identified as the nucleocapsid protein and has an approximate molecular weight of 16,000. The other unidentified minor component has an average molecular weight of 29,000.  相似文献   

13.
Major virion low-molecular-weight polypeptides were isolated from the Moloney strain of murine leukemia virus (type C) by agarose chromatography in 6M guanidine hydrochloride and were shown to have molecular weights of 15,000 (p15), 12,000 (p12), and 10,000 (p10) by their elution volumes and by their relative mobilities in sodium dodecyl sulfate-polyacrylamide gels. Each polypeptide could be iodinated and employed in double antibody radioimmunoassay procedures. All three polypeptides demonstrated a high degree of type-specificity in serologic immunoprecipitation analysis and in corresponding competition immunoassays. The p15 was immunologically distinct from other viron polypeptides including p12 and p10; the p12 and p10 were highly related to each other but not to other virion polypeptides and were even more type-specific than the p15 in serologic tests. Competition immunoassays with p15 and p10 indicate that the Moloney strain of MuLV is only a distant relative of the Friend-Rauscher group. The combined use of the Kirsten and Moloney low-molecular-weight polypeptide immunoassays suggest that xenotropic viruses constitute yet another group(s) of murine leukemia virus with distinct type-specific antigens, further expanding an already heterogeneous group of mouse type C viruses.  相似文献   

14.
The major internal structural protein of human T-cell lymphotropic virus type III (HTLV-III), a virus etiologically implicated in acquired immunodeficiency syndrome (AIDS), was purified to homogeneity. This 24,000-molecular-weight protein (p24) was shown to lack immunologic cross-reacting antigenic determinants shared by other known retroviruses, including HTLV-I and HTLV-II, with the exception of equine infectious anemia virus (EIAV). A broadly reactive competition immunoassay was developed in which antiserum to EIAV was used to precipitate 125I-labeled HTLV-III p24. Although the major structural proteins of HTLV-III and EIAV competed in this assay, other type B, C, and D retroviral proteins lacked detectable reactivity. Thus, HTLV-III is more related to EIAV than to any other retroviruses. That the HTLV-III isolate is very distinct from HTLV-I and HTLV-II was further confirmed by the amino acid compositions of the major internal antigens of all three isolates. Moreover, comparison of the amino-terminal amino acid sequence of HTLV-III p24 with analogous sequences for HTLV-I and HTLV-II p24 showed that these proteins do not share significant sequence homology. In an attempt to evaluate immune response in individuals exposed to HTLV-III, sera from AIDS and lymphadenopathy syndrome patients as well as from clinically normal blood donor controls were tested for antibodies to HTLV-III p24. The results showed that sera from 93% of lymphadenopathy syndrome patients and 73% of AIDS patients exhibited high-titered antibodies to HTLV-III p24. In contrast, none of the normal control sera showed detectable reactivity to HTLV-III p24.  相似文献   

15.
The soluble proteins of adenovirus type 1 have been separated and purified. Their antigenic characteristics were compared in different precipitation experiments performed in electric field. Both two-dimension immune electrophoresis and rocket electrophoresis can successfully be applied for quick diagnostic purposes. Quantitative determination of virus proteins is also feasible by rocket electrophoresis. The isoelectric point values of hexon, penton and fibre were pI 4.55, pI 4.69 and pI 7.07, respectively. The amino acid composition of type 1 adenovirus and its capsid components was determined from separated and purified protein preparations. The former differed in amino acid composition from the tissues used for virus propagation.  相似文献   

16.
Sphingomyelinase, purified to apparent homogeneity from human placenta, is an acidic protein, as judged from its amino acid composition and by isoelectric focusing of the carboxymethylated protein. The amino acid composition is characterized by an approximately equal content of hydrophobic and polar amino acid residues. The reduced-alkylated polypeptides were separated into two groups. Most of the polypeptides were heterogeneous with pI values of 4.4-5.0, but an additional more minor component was observed at pI 5.4. Liquid isoelectric focusing resolved the purified enzyme into a single major component (pI 4.7-4.8), a minor component (pI 5.0-5.4) and a plateau region of activity (pI 6-7). On thin-layer isoelectric focusing, the protein profile obtained from each of these regions was the same. In addition, the substrate specificity, Km values and effect of inhibitory substances were identical. We conclude that sphingomyelinase is an acidic, microheterogeneous protein that likely exists as a holopolymer of a single major polypeptide chain. the heterogeneity of the intact protein on isoelectric focusing appears to reflect this microheterogeneity, which is influenced by a tendency to associate with itself and with detergents such as Triton X-100.  相似文献   

17.
The complete amino acid sequence of human T-cell leukemia virus (HTLV) structural protein p15 has been determined. The intact protein and peptides generated by enzymatic digestion and acid cleavage were purified by reversed-phase liquid chromatography and subjected to semi-automated Edman degradation. HTLV p15 is a basic linear polypeptide composed of 85 amino acids with Mr 9458. The primary structure indicates that HTLV p15 is homologous to the nucleic acid binding proteins of other type-C retroviruses and especially related to bovine leukemia virus p12.  相似文献   

18.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

19.
The polypeptide products formed in two cell-free protein-synthetic systems programmed with encephalomyocarditis (EMC) virus ribonucleic acid (RNA) have been compared with the virus-specific proteins found in EMC-infected cells and with the capsid proteins of the purified virion. Tryptic peptides of (35)S-methioninelabeled proteins from these three sources were compared by co-chromatography and electrophoresis and by isoelectric focussing. Fifty-two methionine-containing peptides were resolved in digests of material from infected cells, of which about one-third were also clearly present in digests of the virion capsid proteins. The product formed in response to EMC RNA in cell-free systems from Krebs mouse ascites tumor cells yielded 26 to 29 such peptides. Most of these peptides were shown to behave identically with virus-specific peptides from infected cells, whereas just under half of them appeared to be identical with peptides from the virion capsid proteins. The product formed in response to EMC RNA in the L-cell cell-free system was similar, whereas six additional EMC-specific peptides were detected in mixed Krebs L-cell systems. The results indicate that the EMC RNA genome is partially translated in the mouse cell-free systems used to yield products containing both virion capsid and virus-specific noncapsid polypeptides.  相似文献   

20.
Antigen-specific T-helper (Th) lymphocytes are critical for the development of antiviral humoral responses and the expansion of cytotoxic T lymphocytes (CTL). Identification of relevant Th lymphocyte epitopes remains an important step in the development of an efficacious subunit peptide vaccine against equine infectious anemia virus (EIAV), a naturally occurring lentivirus of horses. This study describes Th lymphocyte reactivity in EIAV carrier horses to two proteins, p26 and p15, encoded by the relatively conserved EIAV gag gene. Using partially overlapping peptides, multideterminant and possibly promiscuous epitopes were identified within p26. One peptide was identified which reacted with peripheral blood mononuclear cells (PBMC) from all five EIAV-infected horses, and three other peptides were identified which reacted with PBMC from four of five EIAV-infected horses. Four additional peptides containing both CTL and Th lymphocyte epitopes were also identified. Multiple epitopes were recognized in a region corresponding to the major homology region of the human immunodeficiency virus, a region with significant sequence similarity to other lentiviruses including simian immunodeficiency virus, puma lentivirus, feline immunodeficiency virus, Jembrana disease virus, visna virus, and caprine arthritis encephalitis virus. PBMC reactivity to p15 peptides from EIAV carrier horses also occurred. Multiple p15 peptides were shown to be reactive, but not all infected horses had Th lymphocytes recognizing p15 epitopes. The identification of peptides reactive with PBMC from outbred horses, some of which encoded both CTL and Th lymphocyte epitopes, should contribute to the design of synthetic peptide or recombinant vector vaccines for EIAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号