首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
When sucrose is provided as a substrate for glucosyltransferase (GTF), Spp+ cells of the oral bacteria Streptococcus gordonii grow embedded in an insoluble glucan mass associated with surfaces. Spp- phase variants with lower GTF activity, which either arise from or are grown with Spp+ cells, segregate preferentially as unattached cells in the culture supernatants. Conversely, Spp+ revertants preferentially accumulate on surfaces. GTF phase variation, therefore, may facilitate the dispersion of S. gordonii cells throughout the oral cavity.  相似文献   

2.
Mutants of Streptococcus gordonii Challis over-producing glucosyltransferase   总被引:11,自引:0,他引:11  
Two mutants of Streptococcus gordonii which over-produced extracellular polysaccharide when grown on sucrose-containing medium were isolated after mutagenesis of strain Challis with ethyl methanesulphonate. The mutants, designated strains OB20 and OB30, expressed 2.6-fold and 4.7-fold respectively more glucosyltransferase (GTF) activities than the wild-type strain. Transformation experiments suggested that the two mutants carried different mutations, denoted gtf-20 and gtf-30. A double mutant (gtf-20 gtf-30) was constructed and this strain produced 6.4-fold more GTF. Enzymes from wild-type and mutant strains were biochemically indistinguishable and they synthesized structurally identical glucans. Increasing the Na+ concentration of the bacterial growth medium reduced GTF production in all strains by about 60%. Tween 80 also inhibited enzyme production and more specifically reduced GTF synthesis by the mutants. The mutations gtf-20 and gtf-30 appear to define separate genetic loci involved in regulating expression of GTF activity in S. gordonii.  相似文献   

3.
The single glucosyltransferase (GTF) of Streptococcus gordonii Challis CH1 makes alpha 1,3- and alpha 1,6-linked glucans from sucrose. The GTF carboxyl-terminal region has six direct repeats thought to be involved in glucan binding. Strains with defined mutations in this region have been described recently (M. M. Vickerman, M. C. Sulavik, P. E. Minick, and D. B. Clewell, Infect. Immun. 64:5117-5128, 1996). Strain CH107 GTF has three internal direct repeats deleted; the 59 carboxyl-terminal amino acids are identical to those of the parental strain. This deletion resulted in decreased enzyme activity but did not affect the amount of cell-associated GTF protein. The GTFs of strains CH2RPE and CH4RPE have six and eight direct repeats, respectively, but are both missing the 14 carboxyl-terminal amino acids. Strain CH2RPE had significantly decreased levels of cell-associated GTF; this decrease was not obviated by the increased number of direct repeats in strain CH4RPE. Thus, the carboxyl-terminal amino acids appeared to influence the amount of cell-associated GTF more than the direct repeats. The qualitative and quantitative differences in the GTFs did not affect the abilities of these strains to accumulate on hydroxyapatite beads in the absence of sucrose. However, when sucrose was added as a substrate for GTF, the mutant strains were unable to accumulate on these surfaces to the same extent as the parent. These differences in sucrose-associated accumulation may be due to changes in the nature of the glucans produced by the different enzymes and/or cohesive interactions between these glucans and the GTF on the surfaces of the growing streptococci.  相似文献   

4.
Streptococcus gordonii Challis was previously shown to give rise to phase variants expressing high (Spp+) or low (Spp-) levels of extracellular glucosyltransferase (GTF) activity. Here, shotgun cloning of an S. gordonii Spp+ chromosomal digest resulted in a chimeric plasmid (pAM5010) able to complement the Spp- phenotype. In addition, introduction of pAM5010 into an Spp+ strain resulted in a 10-fold increase in GTF expression. Deletion analysis of pAM5010 identified a 1.2-kb DNA segment which exhibited the same functional properties as pAM5010. Nucleotide sequence analysis of this region revealed a gene approximately 1 kb in size. The gene was designated rgg. Disruption of the chromosomal rgg gene open reading frame in an Spp+ strain resulted in strain DS512, which displayed an Spp(-)-like phenotype and had 3% of wild-type GTF activity. A plasmid containing the rgg gene was able to complement the DS512 phenotype and significantly increase GTF expression above wild-type levels. Sequence analysis and other data showed that the S. gordonii GTF determinant, designated gtfG, is located 66 bp downstream of the rgg gene. The sequence also revealed interesting inverted repeats which may play a role in the regulation of gtfG. We conclude that rgg positively regulates the expression of GTF and influences expression of the Spp phenotype.  相似文献   

5.
Recently, we found a novel primer-independent, water-soluble glucan synthase as a fourth glucosyltransferase (GTF) in a culture supernatant of strain AHT-k of Streptococcus sobrinus (Y. Yamashita, N. Hanada, and T. Takehara, Biochem. Biophys. Res. Commun. 150:687-693, 1988). In the present study, four kinds of purified GTFs, including the novel GTF, were prepared. They were composed of two primer-dependent GTFs and two primer-independent GTFs. Of the primer-dependent GTFs, one was a water-insoluble glucan synthase and the other was a water-soluble glucan synthase; both of the primer-independent GTFs were water-soluble glucan synthases (GTF-Sis). Using antisera against four purified GTFs, we concluded that the immunological properties of each were completely different from those of the others. Additionally, it was shown that the novel GTF-Si, which was previously shown to have a molecular weight of 137,000, was proteolytically degraded and could be isolated at a molecular weight of 152,000 and that Streptococcus cricetus secreted an enzyme that immunologically cross-reacted with GTF-Si. While the product of the novel GTF-Si was not an effective primer for both of the primer-dependent enzymes (water-soluble and -insoluble glucan synthases), the product of the enzyme affected the molecular size of the products of the other GTF-Sis.  相似文献   

6.
Expression of measles virus antigens in Streptococcus gordonii   总被引:1,自引:0,他引:1  
The measles virus proteins haemagglutinin (HA) and fusion protein (F), which together mediate attachment and penetration of the virus in the host cell and can elicit production of neutralising antibodies in the course of natural infection were expressed in the vaccine vector Streptococcus gordonii, a Gram-positive bacterium normally present in the human oral cavity. HA and F were expressed as fusion proteins attached to the bacterial surface, and were both found to be immunogenic when the recombinant S. gordonii were inoculated subcutaneously in mice.  相似文献   

7.
Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.  相似文献   

8.
Y Umesaki  Y Kawai    M Mutai 《Applied microbiology》1977,34(2):115-119
Glucan production from sucrose by Streptococcus mutans OMZ 176 was stimulated approximately threefold in the presence of 0.1% Tween 80. When OMZ 176 was grown in a medium containing glucose, the glucosyltransferase level in the medium was also increased about fivefold in the presence of 0.1% Tween 80. The glucosyltransferase level increased in proportion to the logarithm of the concentration of Tween 80 in the glucose medium. Tween 80 affected neither bacterial growth nor the activity of glucosyltransferase. The appearance of glucosyltransferase in the glucose medium was inhibited immediately by chloramphenicol and actinomycin D and, after a lag, by rifampin as well. It was observed that the fatty acid composition of the cells grown with Tween 80 was altered. These results suggest that Tween 80 stimulates glucosyltransferase synthesis either directly, or indirectly by promoting glucosyltransferase secretion.  相似文献   

9.
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.  相似文献   

10.
Specific inhibition of glucosyltransferase of Streptococcus mutans   总被引:1,自引:0,他引:1  
Clinical dextran, partially oxidized with sodium periodate, acts as a potent inhibitor of the extracellular glucosyltransferases of several cariogenic strains of oral Streptococcus mutans. Preincubation with oxidized dextran resulted in a rapid loss of up to 80% of the ability of the enzyme preparation to synthesize polysaccharide from sucrose, but there was no loss of enzyme activity when the oxidized dextrans were reduced with sodium borohydride before preincubation with enzyme. The presence of unoxidized clinical dextran during the preincubation period afforded the enzymes protection against inhibition by partially-oxidized dextran, but clinical dextran did not readily restore activity when it was added after incubation of the enzyme with oxidized polysaccharide. Fructosyltransferase, and glycogen and starch phosphorylase, activities were not inhibited by oxidized dextran, and the bacterial glucosyltransferases were not inhibited by partially oxidized glycogen and amylose. It is proposed that the potent and specific inhibition of glucosyltransferase by oxidized dextran results from the interaction of dialdehyde groups with reactive functional groups close to the dextran-binding site of the enzyme.  相似文献   

11.
Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H(2)O(2)) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H(2)O(2). Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H(2)O(2)-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.  相似文献   

12.
Streptococcus salivarius (ATCC 25975) produced very low or nondetectable amounts of the extracellular enzyme glucosyltransferase (GTase) when grown in a chemically defined medium. The addition of Tween 80 to this medium resulted in the production of markedly enhanced levels of the enzyme. Oleic acid, the methyl ester of oleic acid, and sucrose each could not substitute for Tween 80 in this regard. The surfactant had no direct activating effect on performed enzyme activity. Tween 80 also stimulated the production of GTase by concentrated cells suspended in defined medium during a time when no measurable growth occurred. Under these conditions, the stimulatory effect of Tween 80 was blocked by chloramphenicol. It was further found that the surfactant dramatically stimulated the differential rate of GTase synthesis. These and other data strongly suggest that Tween 80 stimulates the production of extracellular GTase by acting either directly or indirectly at the level of enzyme synthesis.  相似文献   

13.
Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H2O2). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H2O2 causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.The release of bacterial DNA into the environment is of recent interest since this polymer is now recognized to stabilize cell-to-cell adherence and biofilm architecture (1, 35, 37). Treatment of extracellular DNA (eDNA) with DNase results in reduced intercellular stickiness, consistent with an adhesive function for eDNA. Furthermore, eDNA from Neisseria meningitis appears to have sufficient structural integrity to transform competent strains (11), indicating chromosomal origin. Since the abundance of eDNA is influenced by growth conditions, DNA release can also be regulated (40).DNA release is typically a consequence of cell lysis. Linked to DNA release, genetic transformation is the natural ability of competent bacterial species to take up DNA from the environment (13, 34, 42). During competence development, Streptococcus pneumoniae DNA is released by lysis of a subpopulation of cells (30, 42). Cell lysis and DNA release are controlled in a cell density-dependent signal transduction process. The S. pneumoniae comX regulon, carrying late competence genes, also includes the murein hydrolase genes lytA and cbpD (19, 42). Murein hydrolases digest structural components of the peptidoglycan, contributing to remodeling, recycling, and daughter cell separation. Furthermore, murein hydrolases trigger autolytic cell wall digestion, leading to release of DNA and other cellular content into the environment (36). The autolysis of bacterial cells as part of a regulated death program seems to be an important source for eDNA in diverse species, including Staphylococcus aureus (4, 36, 37), Staphylococcus epidermidis (35), Enterococcus faecalis (44), and Pseudomonas aeruginosa (1). In these species, the eDNA contributes to biofilm formation as a component of the extracellular biofilm matrix (35, 37, 44).Unlike for cell lysis-dependent release, the oral streptococci appear to induce eDNA release by a novel mechanism. In dual-species cultures, the oral commensals Streptococcus sanguinis and Streptococcus gordonii release eDNA in a manner dependent on pyruvate oxidase (Pox) generation of hydrogen peroxide (H2O2) under the control of ambient oxygen (23). In this report, we now provide direct evidence of selective H2O2-induced eDNA release by these oral commensal streptococci.  相似文献   

14.
Nigerose and nigerooligosaccharides served as acceptors for a glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus to give a series of homologous acceptor products. The soluble oligosaccharides (dp 5-9) strongly activated the acceptor reaction, resulting in the accumulation of water-insoluble (1-->3)-alpha-D-glucan. The enzyme transferred the labeled glucosyl residue from D-[U-13C]sucrose to the 3-hydroxyl group at the non-reducing end of the (1-->3)-alpha-D-oligosaccharides, as unequivocally shown by NMR 13C-13C coupling patterns. The values of the 13C-13C one-bond coupling constant (1J) are also presented for the C-1-C-6 of the 13C-labeled alpha-(1-->3)-linked glucosyl residue and of the non-reducing-end residue.  相似文献   

15.
《Gene》1996,169(1):85-90
We have developed a host-vector system for heterologous gene expression in Streptococcus gordonii (Sg) Challis (formerly Streptococcus sanguis), a commensal bacterium of the human oral cavity. The system is based on (i) integration of plasmid insertion vectors into the chromosome of specially engineered recipient hosts, and (ii) the use of the M6-protein-encoding gene (emm6) as a partner for construction of translational gene fusions. M6 is a streptococcal surface protein already proven useful as a fusion partner for the delivery of foreign antigens to the surface of Sg [Pozzi et al., Infect. Immun. 60 (1992) 1902–1907]. Insertion vectors carry a drug-resistance marker, different portions of emm6 and a multiple cloning site to allow construction of a variety of emm6-based fusions. Upon transformation of a recipient host with an insertion vector, 100% of transformants acquire both the drug-resistance marker and the capacity of displaying the M6 molecule on the cell surface. Chromosomal integration occurred at high frequency in recipient host GP1221. Transformation with 1 μg of insertion vector DNA yielded 8.1 x 105 transformants per ml of competent cells  相似文献   

16.
The complete nucleotide sequence was determined for the Streptococcus sobrinus MFe28 gtfI gene, which encodes a glucosyltransferase that produces an insoluble glucan product. A single open reading frame encodes a mature glucosyltransferase protein of 1,559 amino acids (Mr, 172,983) and a signal peptide of 38 amino acids. In the C-terminal one-third of the protein there are six repeating units containing 35 amino acids of partial homology and two repeating units containing 48 amino acids of complete homology. The functional role of these repeating units remains to be determined, although truncated forms of glucosyltransferase containing only the first two repeating units of partial homology maintained glucosyltransferase activity and the ability to bind glucan. Regions of homology with alpha-amylase and glycogen phosphorylase were identified in the glucosyltransferase protein and may represent regions involved in functionally similar domains.  相似文献   

17.
An N-acetyl-beta-D-glucosaminidase (GcnA) from Streptococcus gordonii FSS2 was cloned and sequenced. GcnA had a deduced molecular mass of 72,120 Da. The molecular weight after gel-filtration chromatography was 140,000 Da and by SDS-PAGE was 70,000 Da, indicating that the native protein was a homodimer. The deduced amino acid sequence had significant homology to a glycosyl hydrolase from Streptococcus pneumoniae and the conserved catalytic domain of the Family 20 glycosyl hydrolases. GcnA catalysed the hydrolysis of the synthetic substrates, 4-methylumbelliferyl (4MU)-N-acetyl-beta-D-glucosaminide, 4MU-N-acetyl-beta-D-galactosaminide, 4-MU-beta-D-N,N'-diacetylchitobioside, and 4-MU-beta-D-N,N',N'-chitotrioside as well as the respective chito-oligosaccharides. GcnA was optimally active at pH 6.6 and 42 degrees C. The Km for 4-MU-beta-D-N,N',N'-chitotrioside, 45 microM, was the lowest for all the substrates tested. Hg2+, Cu2+, Fe2+, and Zn2+ completely inhibited while Co2+, Mn2+, and Ni2+ partially inhibited activity. S. gordonii FSS2 and a GcnA negative mutant grew equally well on chito-oligosaccharides as substrates. The S. gordonii sequencing projects indicate two further N-acetyl-beta-D-glucosaminidase activities.  相似文献   

18.
Methionine sulphoxide reductase maintains adhesin function during oxidative stress. Using Streptococcus gordonii as a model, we now show the mechanistic basis of adhesin maintenance provided by MsrA. In biofilms, S. gordonii selectively expresses the msrA gene. When the wild-type strain was grown with exogenous hydrogen peroxide (H(2)O(2)), msrA-specific mRNA expression significantly increased, while acid production was unaffected. In the presence of H(2)O(2), a msrA-deletion mutant (ΔMsrA) showed a 6 h delay in lag phase growth, a 30% lower yield of H(2)O(2), significantly greater inhibition by H(2)O(2) on agar plates (reversed by complementation), 30% less adhesion to saliva-coated hydroxyapatite, 87% less biofilm formation and an altered electrophoretic pattern of SspAB protein adhesins. Using mass spectrometry, methionine residues in the Met-rich central region of SspB were shown to be oxidized by H(2)O(2) and reduced by MsrA. In intact wild-type cells, MsrA colocalized with a cell wall-staining dye, and MsrA was detected in both cell wall and cytosolic fractions. To maintain normal adhesion and biofilm function of S. gordonii in response to exogenous oxidants therefore msrA is upregulated, methionine oxidation of adhesins and perhaps other proteins is reversed, and adhesion and biofilm formation is maintained.  相似文献   

19.
Streptococcus gordonii is an important member of the oral biofilm. One of its phenotypic traits is the production of hydrogen peroxide (H2O2). H2O2 is an antimicrobial component produced by S. gordonii that is able to antagonize the growth of cariogenic Streptococcus mutans. Strategies that modulate H2O2 production in the oral cavity may be useful as a simple therapeutic mechanism to improve oral health, but little is known about the regulation of H2O2 production. The enzyme responsible for H2O2 production is pyruvate oxidase, encoded by spxB. The functional studies of spxB expression and SpxB abundance presented in this report demonstrate a strong dependence on environmental oxygen tension and carbohydrate availability. Carbon catabolite repression (CCR) modulates spxB expression carbohydrate dependently. Catabolite control protein A (CcpA) represses spxB expression by direct binding to the spxB promoter, as shown by electrophoretic mobility shift assays (EMSA). Promoter mutation studies revealed the requirement of two catabolite-responsive elements (CRE) for CcpA-dependent spxB regulation, as evaluated by spxB expression and phenotypic H2O2 production assays. Thus, molecular mechanisms for the control of S. gordonii spxB expression are presented for the first time, demonstrating the possibility of manipulating H2O2 production for increased competitive fitness.  相似文献   

20.
The ftf gene, coding for the cell-bound beta-D-fructosyltransferase (FTF) of Streptococcus salivarius ATCC 25975, has been analyzed, and its deduced amino acid sequence has been compared with that of the secreted FTF of Streptococcus mutans and the levansucrases (SacBs) of Bacillus species. A unique proline-rich region detected at the C terminus of the FTF of S. salivarius preceded a hydrophobic terminal domain. This proline-rich region was shown to possess strong homology to the product of the prgC gene from pCF10 in Enterococcus faecalis, which encodes a pheromone-responsive protein of unknown function, as well as homology to the human proline-rich salivary protein PRP-4. A series of 3'-OH deletions of the S. salivarius ftf gene expressed in Streptococcus gordonii Challis LGR2 showed that the C terminus was required for cell surface attachment in this heterologous organism, as only the complete gene product was cell bound. This cell-bound activity was released in the presence of sucrose, suggesting that the mode of attachment and release of the S. salivarius FTF in S. gordonii was similar to that in its native host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号