首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agar-based magnetic affinity support for protein adsorption   总被引:1,自引:0,他引:1  
Magnetic colloidal particles were prepared by a coprecipitation method. The particles were composed of nanometer-sized superparamagnetic Fe(3)O(4) particles stabilized by lauric acid. Then, magnetic agar gel beads were produced by a water-in-oil emulsification method using a mixture of agar solution and the magnetic colloidal particles as the aqueous phase. A reactive triazine dye, Cibacron blue 3GA (CB), was coupled to the gel to prepare an agar-based magnetic affinity support (MAS) for protein adsorption. The support showed good magnetic responsiveness in a magnetic field. Bovine serum albumin (BSA) was used as a model protein to test adsorption equilibrium and kinetic behavior of the MAS. The adsorption equilibrium of BSA to the MAS was described by the Langmuir-type isotherm. Adsorption capacity of the MAS for BSA was up to 25 mg/mL at a CB coupling density of 1.6 micromol/mL. The effect of ionic strength on BSA adsorption was complex, exhibiting a maximum capacity at an ionic strength of 0.06 mol/L. The adsorption of BSA to the MAS was also influenced by pH. Uptake rate of BSA to the MAS was analyzed using a pore diffusion model. The pore diffusion coefficient was estimated to be 1.75 x 10(-11) m(2)/s. Finally, recycled use of the MAS demonstrated the stability of the MAS in protein adsorption and magnetic responsiveness.  相似文献   

2.
Previous studies have demonstrated that protein transport during ultrafiltration can be strongly influenced by solution pH and ionic strength. The objective of this study was to examine the possibility of controlling protein transmission using a small, highly charged ligand that selectively binds to the protein of interest. Experiments were performed using bovine serum albumin and the dye Cibacron Blue. Protein sieving data were obtained with essentially neutral and negatively charged versions of a composite regenerated cellulose membrane to examine the effects of electrostatic interactions. The addition of only 1 g/L of Cibacron Blue to an 8 g/L BSA solution reduced the BSA sieving coefficient through the negatively-charged membrane by more than two orders of magnitude, with this effect being largely eliminated at high salt and with the neutral membrane. Protein sieving data were in good agreement with model calculations based on the partitioning of a charged sphere in a charged pore accounting for the change in net protein charge due to ligand binding and the increase in solution ionic strength due to the free ligand in solution.  相似文献   

3.
Electrostatic interactions can have a significant impact on protein transmission through semipermeable membranes. Experimental data for the transport of bovine serum albumin (BSA) through a polyethersulfone ultrafiltration membrane were obtained in different salt solutions over a range of pH and salt concentrations. Net BSA charge under the same conditions was evaluated from mobility data measured by capillary electrophoresis. The results show that specific ionic composition, in addition to solution pH and ionic strength, can strongly affect the rate of protein transport through semipermeable ultrafiltration membranes. The effects of different ions on BSA sieving are due primarily to differences in ion binding to the protein, which leads to significant differences in the net protein charge at a given pH and ionic strength. This effect could be described in terms of an effective protein radius, which accounts for the electrostatic exclusion of the charged protein from the membrane pores. These results provide important insights into the nature of the electrostatic interactions in membrane systems.  相似文献   

4.
Diffusion and partitioning of proteins in charged agarose gels.   总被引:4,自引:2,他引:2       下载免费PDF全文
The effects of electrostatic interactions on the diffusion and equilibrium partitioning of fluorescein-labeled proteins in charged gels were examined using fluorescence recovery after photobleaching and gel chromatography, respectively. Measurements were made with BSA, ovalbumin, and lactalbumin in SP-Sepharose (6% sulfated agarose), in phosphate buffers at pH 7 and ionic strengths ranging from 0.01 to 1.0 M. Diffusivities in individual gel beads (D) and in the adjacent bulk solution (D infinity) were determined from the spatial Fourier transform of the digitized two-dimensional fluorescence recovery images. Equilibrium partition coefficients (phi) were measured by recirculating protein solutions through a gel chromatography column until equilibrium was reached, and using a mass balance. Diffusion in the gel beads was hindered noticeably, with D/D infinity = 0.4-0.5 in each case. There were no effects of ionic strength on BSA diffusivities, but with the smaller proteins (ovalbumin and lactalbumin) D infinity increased slightly and D decreased at the lowest ionic strength. In contrast to the modest changes in diffusivity, there were marked effects of ionic strength on the partition coefficients of these proteins. We conclude that for diffusion of globular proteins through gel membranes of like charge, electrostatic effects on the effective diffusivity (Deff = phi D) are likely to result primarily from variations in phi with only small contributions from the intramembrane diffusivity.  相似文献   

5.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

6.
The effect of surface properties on the adsorption of bovine gamma-globulin, a model protein for antibody, was studied. Polystyrene latex (PS), hydrophilic copolymer lattices of styrene/2-hydroxyethyl methacrylate [P(S/HEMA)], styrene/ methacrylic acid [P(S/MAA)] and methyl methacrylate/ 2-hydroxyethyl methacrylate [P(MMA/HEMA)], and colloidal silica were used. The adsorption isotherms of gamma-globulin on these colloidal particles were measured as a function of pH and ionic strength. The hydrophilic particles showed low affinities for gamma-globulin at alkaline pH, while PS showed high affinities for gamma-globulin over the whole range of pH and ionic strength. The gamma-globulin adsorption on hydrophilic particles was highly reversible with respect to the pH and ionic strength compared with that on PS. These differences indicate that the dominant driving forces of adsorption are related to the hydrophilicity of particles. The adsorption isotherms of all colloidal particles showed the plateau values, and the order of maximum values of plateau adsorption was P(S/MAA) > PS or P(S/HEMA), silica > P(MMA/HEMA). Thus, they were also affected by the charged groups and the hydrophilicity of the surfaces. On the other hand, the plateau values of all colloidal particles were more or less symmetrical with a maximum at around the isoelectric point of gamma-globulin at an ionic strength of 0.01. This behavior is attributed to the important role of the lateral interaction between the adsorbed molecules at low ionic strength.  相似文献   

7.
The aim of the present work is to study the sequential adsorption of F(ab')(2) and bovine serum albumin (BSA) molecules adsorbed onto positively and negatively charged polystyrene latexes. Cationic and anionic latexes were prepared by emulsifier-free emulsion polymerization. Adsorptions of F(ab')(2) on both latexes at a low ionic strength and different pHs were performed. The cationic latex showed a higher adsorption of F (ab')(2) molecules over a range of pH, which could be due to the formation of multilayers. Sequential adsorption of anti-CRP F(ab')(2) and monomeric BSA were performed at two different pre-adsorbed F(ab')(2) amounts on both types of latex. Displacement of F(ab')(2) occurred only when the preadsorbed amounts were larger than a certain critical value, which depends on the adsorption pH. A greater displacement of larger preadsorbed amounts might be the result of a weaker contact between the protein molecules and the polystyrene surface. The displacement of F(ab')(2) previously adsorbed onto both latexes occurred due to pH changes, an increase of ionic strength and the presence of BSA molecules. The effect caused by these three factors was studied independently. The main factors in the desorption of F(ab')(2) on the anionic latex are the changes in pH and ionic strength, whereas on the cationic latex the desorption is mainly caused by the increase of the ionic strength and the presence of BSA. The colloidal stability of the immunotatex was improved by BSA adsorption, especially on cationic latex. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
Tong XD  Sun Y 《Biotechnology progress》2003,19(6):1721-1727
A novel magnetic agarose support (MAS) was fabricated for application in a liquid magnetically stabilized fluidized bed (MSFB). It was produced by water-in-oil emulsification method using a mixture of agarose solution and nanometer-sized superparamagnetic Fe(3)O(4) particles as the aqueous phase. The MAS showed good superparamagnetic responsiveness in a magnetic field. A reactive triazine dye, Cibacron blue 3GA (CB), was coupled to the gel to prepare a CB-modified magnetic agarose support (CB-MAS) for protein adsorption. Lysozyme was used as a model protein to test the adsorption equilibrium and kinetic behavior of the CB-MAS. The dependence of bed expansion in the MSFB with a transverse magnetic field on liquid velocity and magnetic field intensity was investigated. Liquid-phase dispersion behavior in the MSFB was examined by measurements of residence time distributions and compared with that obtained in packed and expanded beds. Dynamic lysozyme adsorption in the MSFB was also compared with those in packed and expanded beds. The dynamic binding capacity at 10% breakthrough was estimated at 55.8 mg/mL in the MSFB, higher than that in the expanded bed (31.1 mg/mL) at a liquid velocity of 45 cm/h. The results indicate that the CB-MAS is promising for use in liquid MSFB for protein adsorption.  相似文献   

9.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

10.
Ultrafiltration is used to remove small impurities from a variety of processing streams. However, the clearance of small charged impurities may be inadequate due to electrostatic exclusion by the charged ultrafiltration membranes, an effect that has been largely unappreciated. Ultrafiltration experiments were performed to evaluate the transmission of several model impurities with different electrical charge through ultrafiltration membranes having different surface charge characteristics. Highly charged impurities are strongly rejected by charged cellulose and polyethersulfone membranes even though these solutes are much smaller than the membrane pore size. These effects could be eliminated by using high ionic strength solutions to shield the electrostatic interactions. The sieving data are in good agreement with model calculations based on the partitioning of charged spheres into charged cylindrical pores. Guidelines are developed for estimating conditions needed to obtain effective removal of small charged impurities through charged ultrafiltration membranes.  相似文献   

11.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

12.
The effect of ionic strength on the rate constant for electron transfer has been used to determine the magnitude and charge sign of the net electrostatic potential which exists in close proximity to the sites of electron transfer on various c-type cytochromes. The negatively charged ferricyanide ion preferentially reacts at the positively charged exposed heme edge region on the front side of horse cytochrome c and Paracoccus cytochrome c2. In contrast, at low ionic strength, the positively charged cobalt phenanthroline ion interacts with the negatively charged back side of cytochrome c2, and at high ionic strength at a positively charged site on the front side of the cytochrome. With horse cytochrome c, over the ionic strength range studied, cobalt phenanthroline reacts only at a positively charged site which is probably not at the heme edge. These inorganic oxidants do not react at the relatively uncharged exposed heme edge sites on Azotobacter cytochrome c5 and Pseudomonas cytochrome c-551, but rather at a negatively charged site which is away from the heme edge. The results demonstrate that at least two electron-transferring sites on a single cytochrome can be functional, depending on the redox reactant used and the ionic strength. Electrostatic interactions between charge distributions on the cytochrome surface and the other reactant, or interactions involving uncharged regions on the protein(s), are critical in determining the preferred sites of electron transfer and reaction rate constants. When unfavorable electrostatic effects occur at a site near the redox center, less optimal sites at a greater distance can become kinetically important.  相似文献   

13.
Streamline Direct HST is a new kind of mixed-mode adsorbent with cation exchange ligand, especially developed for the expanded bed adsorption process, which can capture target protein directly from the moderate ionic strength feedstock without the need of dilution or other additives. In this study, the isotherm adsorption behaviors and the isocratic retention factors of bovine serum albumin (BSA) on Streamline Direct HST were measured, and the corresponding adsorption mechanisms were also described. The results indicated that Streamline Direct HST shows the typical property of salt-independent adsorption and the maximum binding capacity of BSA occurs near the isoelectric point of BSA. When there are some amounts of electrostatic repulsion protein-adsorbent interactions, the multilayer adsorption could be found, and high salt concentration does not favor the adsorption of protein. A patch-controlled adsorption process and an oriented adsorption model are proposed for describing the adsorption behaviors under electrostatic repulsion condition.  相似文献   

14.
Zhou XP  Su XL  Sun Y 《Biotechnology progress》2007,23(5):1118-1123
The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.  相似文献   

15.
Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter‐ and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax? polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531–1538, 2016  相似文献   

16.
When polylysine is complexed to flavodoxin at low ionic strength, the electrostatic potential of the region which is involved in electron transfer is modified such that positively charged oxidants react more slowly with flavodoxin semiquinone, and negatively charged oxidants react more rapidly. The reaction rate of the uncharged benzoquinone molecule is unaffected. An especially strong effect (approximately 200-fold) occurs with ferricyanide. This is interpreted in terms of electrostatic control of the reaction site. Complexation also changes the conformation of the region around the FMN prosthetic group, which is reflected in the fluorescence and circular dichroism spectra of the protein.  相似文献   

17.
The adsorption to bilayer membranes of the thiadicarbocyanine dyes, diSCn(5), has been studied as a function of the membrane's surface-charge density, the aqueous ionic strength, and the length (n) of the hydrocarbon side chain of the dye. "Probe" measurements in planar bilayers, microelectrophoresis of liposomes, and measurement of changes in dye absorbance and fluorescence in liposomes were used to study dye adsorption to membranes. These measurements indicated that the membrane:water partition coefficient for the dye monomer increases with the length of the hydrocarbon side chain. However, the formation of large aggregates in the aqueous phase also increases with increasing chain length and ionic strength so that the actual dye adsorbing to the membrane goes through a maximum at high but not at low ionic strengths. More dye adsorbs to negatively charged than neutral membranes. Membrane-bound dye spectra were easily resolved in negatively charged liposomes where it was observed that these dyes could exist as monomers, dimers, and large aggregates. For diSC1(5) a spectral peak was observed at low but not high ionic strengths (i.e. the conditions in which this dye appears to form voltage-gated channels) corresponding to small aggregates which appeared to adsorb to the membrane. Finally, the adsorption of these dyes to membranes results in more positive electrostatic potentials composed primarily of dye-induced "boundary" potentials and somewhat less of "double-layer" potentials.  相似文献   

18.
Adsorption of the polylysine and of the copolypeptides: L-lysine/L-serine and L-lysine/L-phenylalanine on phospholipid monolayers has been investigated. The charge density of the monolayers was varied by using the negatively charged phosphatidyl serine and the neutral phosphatidyl choline at different ratios. The surface concentrations of the adsorbed polypeptides was determined by measuring the surface radiation of their radioactive label.The adsorbing capacity of the monolayer surfaces increases with their negative charge, however with respect to polypeptides the surface activity sequence is pL < pLS < pLφ. From the dependence of adsorption on the ionic strength it was concluded that it is controlled by three types of interaction: (1) electrostatic attraction to the negatively charged surface; (2) electrostatic repulsion between adsorbed polybases; (3) hydrophobic interactions involving specific structural arrangements. This is true even of the apparently neutral PC monolayer where the fixed phosphate groups form an electrical double layer with the more mobile choline groups which can be interpenetrated by the charged groups of the basic polypeptides.  相似文献   

19.
The pH- and electrolyte-dependent charging of collagen I fibrils was analyzed by streaming potential/streaming current experiments using the Microslit Electrokinetic Setup. Differential scanning calorimetry and circular dichroism spectroscopy were applied in similar electrolyte solutions to characterize the influence of electrostatic interactions on the conformational stability of the protein. The acid base behavior of collagen I was found to be strongly influenced by the ionic strength in KCl as well as in CaCl(2) solutions. An increase of the ionic strength with KCl from 10(-4) M to 10(-2) M shifts the isoelectric point (IEP) of the protein from pH 7.5 to 5.3. However, a similar increase of the ionic strength in CaCl(2) solutions shifts the IEP from 7.5 to above pH 9. Enhanced thermal stability with increasing ionic strength was observed by differential scanning calorimetry in both electrolyte systems. In line with this, circular dichroism spectroscopy results show an increase of the helicity with increasing ionic strength. Better screening of charged residues and the formation of salt bridges are assumed to cause the stabilization of collagen I with increasing ionic strength in both electrolyte systems. Preferential adsorption of hydroxide ions onto intrinsically uncharged sites in KCl solutions and calcium binding to negatively charged carboxylic acid moieties in CaCl(2) solutions are concluded to shift the IEP and influence the conformational stability of the protein.  相似文献   

20.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号