首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Machiah DK  Gowda TV 《Biochimie》2006,88(6):701-710
A post-synaptic neurotoxic phospholipase A(2) (PLA(2)) has been purified from Indian cobra Naja naja venom. It was associated with a peptide in the venom. The association was disrupted using 8 M urea. It is denoted to be a basic protein by its behavior on both ion exchange chromatography and electrophoresis. It is toxic to mice, LD(50) 1.9 mg/kg body weight (ip). It is proved to be post-synaptic PLA(2) by chymographic experiment using frog nerve-muscle preparation. A glycoprotein, (WSG) was isolated from a folk medicinal plant Withania somnifera. The WSG inhibited the phospholipase A(2) activity of NN-XIa-PLA(2,) isolated from the cobra venom, completely at a mole-to-mole ratio of 1:2 (NN-XIa-PLA(2): WSG) but failed to neutralize the toxicity of the molecule. However, it reduced the toxicity as well as prolonged the death time of the experimental mice approximately 10 times when compared to venom alone. The WSG also inhibited several other PLA(2) isoforms from the venom to varying extent. The interaction of the WSG with the PLA(2) is confirmed by fluorescence quenching and gel-permeation chromatography. Chemical modification of the active histidine residue of PLA(2) using p-brophenacyl bromide resulted in the loss of both catalytic activity as well as neurotoxicity of the molecule. These findings suggest that the venom PLA(2) has multiple sites on it; perhaps some of them are overlapping. Application of the plant extract on snakebite wound confirms the medicinal value associated with the plant.  相似文献   

2.
Venom hyaluronidases help in rapid spreading of the toxins by destroying the integrity of the extra-cellular matrix of the tissues in the victims. A hyaluronidase inhibitor (WSG) is purified from a folk medicinal plant, Withania somnifera. The glycoprotein inhibited the hyaluronidase activity of cobra (Naja naja) and viper (Daboia russelii) venoms, which was demonstrated by zymogram assay and staining of the skin tissues for differential activity. WSG completely inhibited the activity of the enzyme at a concentration of 1:1 w/w of venom to WSG. Thus we are able to demonstrate that the glycoprotein inhibits hyaluronidase activity of the venoms. External application of the plant extract as an antidote in rural parts of India to snakebite victims appears to have a scientific basis.  相似文献   

3.
The current experimental work deals with the immunomodulatory studies on the extract of Withania somnifera (L.) Dunal root powder against benzo(a)pyrene induced lung cancer in male Swiss albino mice. In our previous study, we reported the antioxidant and anticarcinogenic effect of W. somnifera (L.) Dunal along with paclitaxel. Immune dysfunction has been found to be associated with cancer and chemotherapy. Benzo(a)pyrene induced cancer animals were treated with 400mg/kg bodyweight of W. somnifera (L.) Dunal extract for 30 days significantly alters the levels of immunocompetent cells, immune complexes and immunoglobulins. Based on the data, the carcinogen as well as the paclitaxel affects the immune system, the toxic side effects on the immune system is more reversible and more controllable by W. somnifera (L.) Dunal. These results concluded the immunomodulatory activity of W. somnifera (L.) Dunal extract, which is a known immunomodulator in indigenous medicine.  相似文献   

4.
A protein, which neutralizes the enzymatic, toxic, and pharmacological activities of various basic and acidic phospholipases A(2) from the venoms of Bothrops moojeni, Bothrops pirajai, and Bothrops jararacussu, was isolated from B. moojeni snake plasma by affinity chromatography using immobilized myotoxins on Sepharose gel. Biochemical characterization of this myotoxin inhibitor protein (BmjMIP) showed it to be an oligomeric glycoprotein with a M(r) of 23,000-25,000 for the monomeric subunit. BmjMIP was stable in the pH range from 4.0 to 12.0, between 4 and 80 degrees C, even after deglycosylation. The role of the carbohydrate moiety was investigated and found not to affect the in vitro function of the inhibitor. The corresponding 500bp cDNA obtained by RT-PCR from the liver of the snake encodes a mature protein of 166 amino acid residues including a 19 amino acid signal peptide. The primary structure of BmjMIP showed a high similarity with other snake phospholipase A(2) inhibitors (PLIs) in which the carbohydrate recognition domain (CRD) and the glycosylation site (Asn103) are conserved. Circular dichroism spectroscopy indicated that no significant alterations in the secondary structure of either the BmjMIP or the target protein occur upon their interaction. BmjMIP has a wide range of inhibitory properties against basic and acidic PLA(2)s from Bothrops venoms (anti-enzymatic, anti-myotoxic, anti-edema inducing, anti-cytotoxic, anti-bactericidal, and anti-lethal). However, the inhibitor showed a reduced ability to neutralize the biological activities of crotoxin B (CB), the PLA(2) homologue associated with crotapotin in Crotalus durissus terrificus snake venom. Finally, the purified PLA(2) inhibitor was shown to protect in vivo against the toxic and pharmacological effects of a homologous PLA(2) enzyme, suggesting that PLIs or a corresponding derived peptide may prove useful in the treatment of snakebite victims or, more importantly, in the treatment of the many human diseases in which these enzymes have been implicated.  相似文献   

5.
The effect of Withania somnifera L. Dunal root powder on paw volume and serum lysosomal enzyme activities was investigated in monosodium urate crystal-induced rats. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal incubated polymorphonuclear leucocytes (PMNL). A significant increase in the level of paw volume and serum lysosomal enzymes was observed in monosodium urate crystal-induced rats. The increased beta-glucuronidase and lactate dehydrogenase level were observed in untreated monosodium urate crystal incubated polymorphonuclear leucocytes. On treatment with the W. somnifera root powder (500/1000 mg/kg body weight), the above changes were reverted back to near normal levels. W. somnifera also showed potent analgesic and antipyretic effect with the absence of gastric damage at different dose levels in experimental rats. For comparison purpose, non-steroidal anti-inflammatory drug (NSAID) indomethacin was used as a standard. These results provide evidence for the suppressive effect of W. somnifera root powder by retarding amplification and propagation of the inflammatory response without causing any gastric damage.  相似文献   

6.
7.
The modulatory effect of Withania somnifera along with paclitaxel on tricarboxylic acid (TCA) cycle key enzymes and electron transport chain complexes were investigated against lung cancer induced by benzo(a)pyrene in Swiss albino mice. Decreased activities of TCA cycle key enzymes such as isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in lung cancer bearing animals were observed. Upon W. somnifera along with paclitaxel administration the above biochemical changes were inclined towards normal control animal values. Activities of mitochondrial enzymes and electron transport complexes were analyzed in the experimental groups to determine the efficiency of energy production. This study further confirms the chemotherapeutic effect of W. somnifera along with paclitaxel which is found to be more effective in the treatment of lung cancer. Thus these results are consistent with our hypothesis that the combination chemotherapy of W. somnifera along with paclitaxel as a promising chemotherapeutic agent.  相似文献   

8.
9.
Withania somnifera glycowithanolides (WSG) were investigated for their preventive effect on the animal model of tardive dyskinesia (TD), induced by once daily administration of the neuroleptic, haloperidol (1.5 mg/kg, i.p.), for 28 days. Involuntary orofacial movements (chewing movements, tongue protusion and buccal tremors) were assessed as TD parameters. WSG (100 and 200 mg, p.o.), administered concomitantly with haloperidol for 28 days, inhibited the induction of the neuroleptic TD. Haloperidol-induced TD was also attenuated by the antioxidant, vitamin E (400 and 800 mg/kg, p.o.), but remained unaffected by the GABA-mimetic antiepileptic agent, sodium valproate (200 and 400 mg/kg, p.o.), both agents being administered for 28 days like WSG. The results indicate that the reported antioxidant effect of WSG, rather than its GABA-mimetic action, may be responsible for the prevention of haloperidol-induced TD.  相似文献   

10.
A crucial virulence factor for intracellular Mycobacterium tuberculosis survival is Protein kinase G (PknG), a eukaryotic-like serinethreonine protein kinase expressed by pathogenic mycobacteria that blocks the intracellular degradation of mycobacteria in lysosomes. Inhibition of PknG results in mycobacterial transfer to lysosomes. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show various pharmacological activities. We describe the docking of 26 withanferin and 14 withanolides from Withania somnifera into the three dimensional structure of PknG of M. tuberculosis using GLIDE. The inhibitor binding positions and affinity were evaluated using scoring functions- Glidescore. The withanolide E, F and D and Withaferin - diacetate 2 phenoxy ethyl carbonate were identified as potential inhibitors of PknG. The available drug molecules and the ligand AX20017 showed hydrogen bond interaction with the aminoacid residues Glu233 and Val235. In addition to Val235 the other amino acids, Gly237, Gln238 and Ser239 are important for withanolide inhibitor recognition via hydrogen bonding mechanisms.  相似文献   

11.
Sterol glycosyltransferases catalyze the synthesis of diverse glycosterols in plants. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a novel 27beta-hydroxy glucosyltransferase was purified to near homogeneity from cytosolic fraction of W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme showed activity with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols/withanolides with beta-OH group at C-17, C-21 and C-27 positions. It transferred glucose to the alkanol at C-25 position of the lactone ring, provided an alpha-OH was present at C-17 in the sterol skeleton. A comparable enzyme has not been reported earlier from plants. The enzyme is distinct from the previously purified W. somnifera 3beta-hydroxy specific sterol glucosyltransferase and does not glucosylate the sterols at C-3 position; though it also follows an ordered sequential bisubstrate reaction mechanism, in which UDP-glucose and sterol are the first and second binding substrates. The enzyme activity with withanolides suggests its role in secondary metabolism in W. somnifera. Results on peptide mass fingerprinting showed its resemblance with glycuronosyltransferase like protein. The enzyme activity in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses.  相似文献   

12.
Two new and seven known withanolides along with beta-sitosterol, stigmasterol, beta-sitosterol glucoside, stigmasterol glucoside, alpha+beta glucose were isolated from the roots of Withania somnifera. Among the known compounds, Viscosa lactone B, stigmasterol, stigmasterol glucoside and alpha+beta glucose are being reported from the roots of W. somnifera for the first time. One of the new compounds contained the rare 16beta-acetoxy-17(20)-ene the other contained unusual 6alpha-hydroxy-5,7alpha-epoxy functional groups in the withasteroid skeleton. The structures were elucidated by spectroscopic methods and chemical transformations.  相似文献   

13.
Sterol glycosyltransferases catalyze the synthesis of diverse glycosteroids in plants, leading to a change in their participation in cellular metabolism. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a cytosolic sterol glucosyltransferase was purified 3406 fold to near homogeneity from W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme was active with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols and phytosterols with 3beta-OH group. It showed a low level of activity with flavonoids and isoflavonoids. The enzyme gave maximum K(cat)/K(m) value (0.957) for 24-methylenecholesterol that resembles aglycone structure of pharmacologically important sitoindosides VII and VIII from W. somnifera. The enzyme follows ordered sequential bisubstrate mechanism of reaction, in which UDP-glucose and sterol are the first and second binding substrates. This is the first detailed kinetic study on purified plant cytosolic sterol glucosyltransferases. Results on peptide mass fingerprinting and substrate specificity suggested that the enzyme belongs to the family of secondary metabolite glucosylating glucosyltransferases. The enzyme activity exhibited a rapid in vivo response to high temperature and salicylic acid treatment of plants, suggesting its physiological role in abiotic and biotic stress.  相似文献   

14.
Four (1, 8-10) and six known (2-7) withanolides were isolated from the leaves of Withania somnifera. Among the new compounds, 10 possessed the rare 3-O-sulfate group with the saturation in A ring and 9 contained unusual 1,4-dien-3-one group. Compound 8 did not have usual 2,3 unsaturation in A ring while 1 had the rare C-16 double bond. The structures of all the compounds were elucidated by spectroscopic methods and chemical transformation.  相似文献   

15.
The roots of Withania somnifera (WS) are used extensively in Ayurveda, the classical Indian system of medicine, and WS is categorized as a rasayana, which are used to promote physical and mental health, to provide defence against disease and adverse environmental factors and to arrest the aging process. WS has been used to stabilize mood in patients with behavioural disturbances. The present study investigated the anxiolytic and antidepressant actions of the bioactive glycowithanolides (WSG), isolated from WS roots, in rats. WSG (20 and 50 mg/kg) was administered orally once daily for 5 days and the results were compared by those elicited by the benzodiazepine lorazepam (0.5 mg/kg, i.p.) for anxiolytic studies, and by the tricyclic anti-depressant, imipramine (10 mg/kg, i.p.), for the antidepressant investigations. Both these standard drugs were administered once, 30 min prior to the tests. WSG induced an anxiolytic effect, comparable to that produced by lorazepam, in the elevated plus-maze, social interaction and feeding latency in an unfamiliar environment, tests. Further, both WSG and lorazepam, reduced rat brain levels of tribulin, an endocoid marker of clinical anxiety, when the levels were increased following administration of the anxiogenic agent, pentylenetetrazole. WSG also exhibited an antidepressant effect, comparable with that induced by imipramine, in the forced swim-induced 'behavioural despair' and 'learned helplessness' tests. The investigations support the use of WS as a mood stabilizer in clinical conditions of anxiety and depression in Ayurveda.  相似文献   

16.
Modification of collagen such as non-enzymatic glycation and cross-linking plays an important role in diabetic complications and age-related diseases. We evaluate the effect of Withania somnifera on glucose-mediated collagen glycation and cross-linking in vitro. Extent of glycation, viscosity, collagen-linked fluorescence and pepsin solubility were assessed in different experimental procedures to investigate the effect of W. somnifera. Tail tendons obtained from rats (Rattus norvegicus) weighing 250-275 g were incubated with 50 mM glucose and 100 mg of metformin or Withania root powder or ethanolic extract of Withania under physiological conditions of temperature and pH for 30 days. Formation of advanced glycation end products (AGE) was measured by fluorescent method whereas the cross-linking of collagen was assessed by pepsin digestion and viscosity measurements. Tendon collagen incubated with glucose showed an increase in glycation, AGE and cross-linking of collagen. The collagen incubated with W. somnifera and metformin ameliorates these modifications. The ethanolic extract of Withania showed more prominent effect than Withania root powder. The activity of ethanolic extract of Withania is comparable to metformin, a known antiglycating agent. In conclusion, Withania could have therapeutic role in the prevention of glycation induced pathogenesis in diabetes mellitus and aging.  相似文献   

17.
The present work was carried out to determine the effects of lyophilized root extracts of Withania somnifera along with pure withaferin-A, on the isolated skin melanophores of frog, Rana tigerina which are disguised type of smooth muscle cells and offer excellent in vitro opportunities for studying the effects of pharmacological and pharmaceutical agents. The lyophilized extract of W. somnifera and its active ingredient withaferin-A induced powerful dose-dependent physiologically significant melanin dispersal effects in the isolated skin melanophores of R. tigerina, which were completely blocked by atropine as well as hyoscine. The per se melanin dispersal effects of lyophilized extracts of W. somnifera and its active ingredient withaferin-A got highly potentiated by neostigmine. It appears that the melanin dispersal effects of the extracts of W. somnifera and withaferin-A is mediated by cholino-muscarinic like receptors having similar properties.  相似文献   

18.
Biotransformation of artemisinin was investigated with two different cell lines of suspension cultures of Withania somnifera. Both cell lines exhibited potential to transform artemisinin into its nonperoxidic analogue, deoxyartemisinin, by eliminating the peroxo bridge of artemisinin. The enzyme involved in the reaction is assumed to be artemisinin peroxidase, and its activity in extracts of W. somnifera leaves was detected. Thus, the non-native cell-free extract of W. somnifera and suspension culture-mediated bioconversion can be a promising tool for further manipulation of pharmaceutical compounds.  相似文献   

19.
A glyco-peptido lipid fraction ("AF") from the alcoholic extract of Trichopus zeylanicus Gaertn. was evaluated for putative antistress activity in a battery of tests. "AF" exhibited significant antistress activity in dose dependent manner in all the parameters studied, against the different stresses use to induce non-specific stress. Ashwagandha, the commercial extract of Withania somnifera roots was used as control: A preliminary acute toxicity study in mice showed a good margin of safety, as the ALD50 value was more than 3000 mg/kg body wt. p.o. with no signs of abnormalities.  相似文献   

20.
Quercetinase (quercetin 2,3-dioxygenase, EC 1.13.11.24) is produced by various filamentous fungi when grown on rutin as the sole carbon and energy source. From a rutin based liquid culture of Penicillium olsonii, we purified a quercetinase with a specific activity of 175U mg(-1). The enzyme is a monomeric glycoprotein of approximately 55 kDa, containing 0.9+/-0.1 copper atoms per protein. Its substrate specificity is restricted to the flavonol family of flavonoids. It is completely inhibited by diethyldithiocarbamate at a concentration of 100 nM and 1H-2-benzyl-3-hydroxy-4-oxoquinolin is a competitive inhibitor with a K(I) of 4 microM. The cDNA poquer1 was cloned and sequenced. It encodes a 365 amino acids long enzyme with a strong sequence identity with the Aspergillus japonicus quercetinase (Q7SIC2). Like the enzyme from A. japonicus, only one of the two cupin domains of the Penicillium olsonii quercetinase is able to bind a metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号