首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA甲基化与脂肪组织生长发育   总被引:1,自引:0,他引:1  
DNA甲基化作为一种重要的表观遗传学修饰方式,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用。DNA甲基化最重要的作用是调控基因表达,它是细胞调控基因表达的重要表观遗传机制之一。近年来的研究发现,DNA甲基化在脂肪组织生长发育以及肥胖症发生过程中发挥着重要作用。DNA甲基化通过调控脂肪细胞分化转录因子、转录辅助因子以及其他脂肪代谢相关基因的表达,从而调控脂肪组织的生长发育。该文综述了脂肪组织生长发育过程中DNA甲基化的最新研究进展,探讨了脂肪组织DNA甲基化的研究趋势和未来发展方向。  相似文献   

2.
3.
4.
DNA methylation: the nuts and bolts of repression   总被引:5,自引:0,他引:5  
DNA methylation is an epigenetic modification which plays an important role in chromatin organization and gene expression. DNA methylation can silence genes and repetitive elements through a process which leads to the alteration of chromatin structure. The mechanisms which target DNA methylation to specific sites in the genome are not fully understood. In this review, we will discuss the mechanisms which lead to the long-term silencing of genes and will survey the progression that has been made in determining the targeted mechanisms for de novo DNA methylation.  相似文献   

5.
6.
7.
DNA methylation of nuclear receptor genes--possible role in malignancy   总被引:2,自引:0,他引:2  
The members of the nuclear receptor superfamily are known to mediate a wide array of basic biological processes, such as regulation of cell growth and differentiation, and induction of apoptosis. In several human malignancies, this central control function of nuclear receptors is disturbed, which seems to play an important role in tumor development and progression. Many nuclear receptor genes have been reported to be downregulated in malignancies; however, only a few mutations, gene arrangements, deletions or similar genetic changes have been shown to occur in these tumors.During the last decade, increasing attention has been directed towards epigenetic mechanisms of gene regulation such as DNA methylation. Many nuclear receptor genes can be silenced through aberrant methylation in tumors; epigenetic silencing, therefore, represents an additional mechanism that modifies expression of key genes during carcinogenesis.This review will give insights into the role of DNA methylation in the silencing of nuclear receptor genes and its involvement in human malignancies.  相似文献   

8.
RNA介导的DNA甲基化作用(RNA-directed DNA Methylation,RdDM)是首次在植物中发现的基因组表观修饰现象,RdDM通过RNA-DNA序列相互作用直接导致DNA甲基化。植物中的RdDM和siRNA介导的mRNA降解现象,都是通过RNA使序列特异性基因发生沉默,它们对于植物的染色体重排、抵御病毒感染、基因表达调控和发育的许多过程起到了非常重要的作用。在植物中有很多的文献报道RdDM现象,但是对于其具体调控机理还不是很清楚。这里对RNA介导的植物DNA甲基化的基本特征进行了简要概述,主要对RdDM机理的研究进展进行了综述,其中包括RdDM过程中的DNA甲基转移酶的种类及其作用机理,DNA甲基化与染色质修饰之间的关系,以及与RdDM相关的重要蛋白质的研究等。在植物中,转录和转录后水平都可能发生RdDM,诱发基因沉默,前者常涉及靶基因启动子的甲基化,后者则牵涉到编码区的甲基化。RdDM的发生依赖于RNAi途径中相似的siRNA和酶,如DCL3、RdR2、SDE4和AGO4。植物中至少含有三类DNA甲基转移酶DRM1/2、MET1和CMT3,其作用部位是与RNA同源的DNA区域中的所有胞嘧啶,而组蛋白H3第九位赖氨酸的甲基化影响着胞嘧啶的甲基化。  相似文献   

9.
10.
11.
12.
13.
14.

Background

Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of protein-coding genes, on uniparental expression of a representative p4-siRNA locus.

Results

Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related glycosylases.

Conclusions

Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2.  相似文献   

15.
DNA methylation in development and human disease   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
DNA methylation in states of cell physiology and pathology   总被引:11,自引:0,他引:11  
DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide) while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation). The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences) five new genes which are potential biomarkers of lung cancer have been presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号