首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9 are oocyte-secreted growth factors that are critical local regulators of ovarian function and may be involved in preovulatory cumulus expansion. As cumulus expansion occurs in response to the ovulatory surge, the present study was designed: 1) to investigate whether GDF9 and BMP15 are regulated by gonadotropins in the mouse ovary; and 2) to visualize changes in both GDF9 and BMP15 immunostaining in response to gonadotropins. Immature 21-day-old mice were sequentially treated with recombinant human FSH (r-hFSH), 5 IU daily, at Days 21, 22, and 23 of life, then injected with 5 IU hCG at Day 24 of life. In response to r-hFSH, steady-state Bmp15 mRNA expression levels increased in both total ovaries and cumulus-oocyte complexes, whereas Gdf 9 mRNA levels did not. In addition, BMP15 protein levels increased in total ovaries. The GDF9 immunostaining was exclusively seen in growing oocytes in both control and gonadotropin-treated mice, whereas that of BMP15, which was also primarily seen in growing oocytes, exhibited important changes in response to gonadotropins. Strong BMP15 immunostaining was observed in the follicular fluid of atretic antral follicles after FSH treatment and in expanded, but not in compact, cumulus cells after hCG. The present results show for the first time that BMP15 levels increase during gonadotropin-induced follicular development, in parallel with oocyte maturation, and that this local factor is likely involved in cumulus expansion as previously suggested by studies in Bmp15-null mice.  相似文献   

2.
3.
4.
5.
Totey SM  Pawshe CH  Singh GP 《Theriogenology》1993,39(5):1153-1171
Media (TCM-199 and Ham's F-10); sera (fetal calf serum, FCS, and buffalo estrous serum, BES); and hormones (FSH, 0.5 ug/ml, LH, 5 ug/ml and estradiol 1 ug/ml) were tested to determine the efficiency of in vitro maturation and fertilization of buffalo follicular oocytes. Immature good quality cumulus-oocyte complexes (COCs) were randomly assigned to 1 of 4 experiments. Each experiment consisted of 6 treatment groups. Oocytes cultured for 24 hours in medium (TCM-199 or Ham's F-10) containing 10% FCS or BES had a significantly higher maturation rate than those in medium alone (P < 0.05). However, the maturation rate was higher in medium supplemented with 10% FCS than with 10% BES. Addition of hormones alone or in combination with sera further improved the maturation rate, but no significant difference was observed in the maturation rate among the 3 hormone-treated groups. Immature oocytes matured in the various cultures were fertilized with frozen-thawed buffalo spermatozoa. Our findings show that hormone and/or serum supplementation of TCM-199 did not improve the fertilization rate. Supplementation of Ham's F-10 with LH alone or in combination with LH + FSH + E(2) and with FCS significantly improved the fertilization rate of oocytes while medium with FSH, E(2) or no hormones did not (P < 0.05); same media supplemented with BES resulted in lower fertilization rates both in the presence or absence of hormones. The results indicate that the culture medium has a marked effect on the fertilization rate of buffalo oocytes. Ham's F-10 + LH + FSH + E(2) supplemented with FCS was the most efficacious culture system of those studied for the in vitro maturation of buffalo oocytes.  相似文献   

6.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific growth factors that appear to play key roles in granulosa cell development and fertility in most mammalian species. We have evaluated the role(s) of these paracrine factors in the development and function of both the cumulus cells and oocytes by assessing cumulus expansion, oocyte maturation, fertilization, and preimplantation embryogenesis in Gdf9+/-Bmp15-/- [hereafter, double mutant (DM)] mice. We found that cumulus expansion, as well as the expression of hyaluronon synthase 2 (Has2) mRNA was impaired in DM oocyte-cumulus cell complexes. This aberrant cumulus expansion was not remedied by coculture with normal wild-type (WT) oocytes, indicating that the development and/or differentiation of cumulus cells in the DM, up to the stage of the preovulatory luteinizing hormone (LH) surge, is impaired. In addition, DM oocytes failed to enable FSH to induce cumulus expansion in WT oocytectomized (OOX) cumulus. Moreover, LH-induced oocyte meiotic resumption was significantly delayed in vivo, and this delayed resumption of meiosis was correlated with the reduced activation of mitogen-activated protein kinase (MAPK) in the cumulus cells, thus suggesting that GDF9 and BMP15 also regulate the function of cumulus cells after the preovulatory LH surge. Although spontaneous in vitro oocyte maturation occurred normally, oocyte fertilization and preimplantation embryogenesis were significantly altered in the DM, suggesting that the full complement of both GDF9 and BMP15 are essential for the development and function of oocytes. Because receptors for GDF9 and BMP15 have not yet been identified in mouse oocytes, the effects of the mutations in the Bmp15 and Gdf9 genes on oocyte development and functions must be produced indirectly by first affecting the granulosa cells and then the oocyte. Therefore, this study provides further evidence for the existence and functioning of an oocyte-granulosa cell regulatory loop.  相似文献   

7.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) belong to the TGF-beta superfamily and are involved in the regulation of folliculogenesis. Though there are many reports concerning the expression and regulation of GDF9 in the process of oocyte maturation, expression of BMP15 during oocyte maturation is still not clearly understood. It has been reported that BMP15 and GDF9 expression is important in folliculogeneiss and that the regulation of these two proteins is complex and species-specific. In this report, we investigated the expression of BMP15 and GDF9 genes during in vitro maturation (IVM) at 0, 6, 12, 18, 24, 30, 36, 42 and 48 h for porcine oocytes. Porcine GDF9 gene was found to be highly expressed in immature oocytes and declined slowly during the oocyte maturation process. BMP15mRNA and its encoded protein were expressed at low levels in immature oocytes and increased to the highest level at 18 h of IVM, which coincides with the time of cumulus cell expansion. Thus, these two genes were differentially expressed during the oocyte maturation process and BMP15 is specifically expressed during cumulus cell expansion in porcine oocytes.  相似文献   

8.
This study was undertaken to investigate the effects of supplementation of serum (fetal calf serum), gonadotropins (LH, FSH, prolactin) and estradiol-17 beta (E2) to culture medium during in vitro maturation of bovine cumulus oocyte complexes on subsequent fertilization and development to the blastocyst stage in vitro. Serum supplementation during bovine oocyte maturation was not required but hormonal supplementation, gonadotropins (LH + FSH) and E2, enhanced the fertilizability and developmental ability of bovine oocytes matured in vitro. The addition of prolactin to maturation medium containing LH, FSH, and E2 did not further enhance frequencies of fertilization and development.  相似文献   

9.
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.  相似文献   

10.
The aim of the study was to identify a cryo-device that would be best suited for the vitrification of buffalo immature cumulus-oocyte complexes (COCs) as judged by viability and meiotic competence of the vitrified-warmed oocytes and their development ability following in vitro fertilization (IVF). The expression of oocyte secreting factors and their receptors (GDF9, BMP15, BMPR2, TGFBR1) and apoptosis related genes (BCL2, BAX, P53, C-MYC) were compared in vitrified-warmed oocytes after in vitro maturation. COCs from the ovaries of slaughtered buffaloes were vitrified in a combination of dimethyl sulfoxide, ethylene glycol, and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). The fresh COCs were exposed to vitrification and warming solutions as in other vitrification methods without plunging in to liquid nitrogen (EC). The viability of vitrified-warmed COCs, 2 h post warming in HS and CT was similar to fresh and EC groups but significantly higher than CS and OPS methods. The proportions of oocytes with first polar body after 24 h in vitro maturation were significantly higher in HS and CT methods than in CS, OPS and CL methods. The development ability of these vitrified-warmed oocytes to blastocyst stage following IVF in all vitrified groups was significantly lower than control and EC groups. Among the vitrified groups, the blastocyst rate in HS, CT and CL groups was significantly higher than in OPS and CS groups. It was also observed that the expression levels of GDF9, BMP15, BMPR2, TGFBR1, BCL2, BAX, P53 and C-MYC genes in vitrified-warmed COCs in CT, HS and CL groups were similar to control. The results indicated that HS, CT and CL are more suitable cryo-devices for vitrification of buffalo immature oocytes.  相似文献   

11.
12.
In this study we have examined the effect of insulin like growth factor I (IGF-I) and its interaction with gonadotropins in the presence or absence of granulosa cell coculture on in vitro oocyte maturation (IVM) and their subsequent embryonic development in buffalo. We also have examined the role of IGF-I alone or in combination with gonadotropins on DNA synthesis, steroidogenesis, and protein synthesis of cumulus-oocytes complexes (COCs) and granulosa cells. Results showed that IGF-I stimulates oocytes maturation in a dose-dependent manner, with maximal effect at a dose of 100 ng/ml (P < 0.05). IGF-I showed positive interaction with follicle-stimulating hormone (FSH) in the presence or absence of granulosa cells on meiotic maturation and synergistically enhanced DNA synthesis, protein synthesis, and steroidogenesis in the presence of granulosa cells. This synergistic effect is mainly caused by the increase of IGF-I receptors in granulosa cells by FSH, as evident by [125I]IGF-I binding study. Luteinizing hormone (LH), however, was found to suppress IGF-I and IGF-I + FSH stimulated oocyte maturation. Addition of LH to cultures containing IGF-I + FSH, on the contrary, caused a significant increase in oocyte maturation when cocultured with granulosa cells. Addition of IGF-I during IVM significantly improve cleavage and blastocyst development rate over the control group. However, there was no cumulative effect when IGF-I and gonadotropins were present together. Addition of granulosa cells during IVM, however, enhanced blastocyst development in the IGF-I + FSH and IGF-I + FSH + LH groups. Our results demonstrated that IGF-I is a major follicular factor responsible for stimulating oocyte maturation in the buffalo. Interaction between IGF-I and FSH suggests that they seem to act synergistically as an autocrine and paracrine regulator of granulosa cells and therefore together promote mitosis, steroidogenesis, and protein synthesis. Mol. Reprod. Dev. 49:277–285, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
15.

Background  

It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes.  相似文献   

16.
17.
It was demonstrated that cysteamine supplementation during in vitro maturation (IVM) improves embryo development by increasing glutathione (GSH) synthesis in several species. An improved developmental competence of oocytes matured in the presence of cysteamine was also recorded in buffalo species. The purpose of this work was to investigate (1) if glutathione is de novo synthesized during in vitro maturation of buffalo oocytes, (2) if cysteamine improves buffalo embryo development via an increase in GSH synthesis, and (3) if the inhibition of glutathione synthesis by buthionine sulfoximide (BSO), in the presence or absence of cysteamine, affects subsequent embryo development and GSH synthesis.Cumulus-oocytes complexes (COCs), recovered from slaughtered animals, were matured in vitro in TCM199+10% fetal calf serum (FCS), 0.5 microg/ml FSH, 5 microg/ml LH and 1 microg/ml 17-beta-estradiol in the absence or presence of cysteamine (50 microM), with or without 5mM BSO. Glutathione content was measured by high-performance liquid chromatography (HPLC) and fluorimetric analysis in immature oocytes and in oocytes matured in the different experimental conditions.In a second experiment, the mature oocytes were in vitro fertilized and cultured for 7 days in order to assess development to blastocysts (BLs). It was demonstrated that buffalo oocytes synthesize glutathione during in vitro maturation and that cysteamine increases glutathione synthesis. Furthermore, the promoting effects of cysteamine on embryo development and GSH synthesis were neutralized by buthionine sulfoximide. These results indicate that glutathione plays a critical role on buffalo embryo development.  相似文献   

18.
Heat shock protein 27 (Hsp27) is a heat shock protein family member which can inhibit apoptosis. Our previous studies reported down-regulated Hsp27 in ovarian tissue derived from women with polycystic ovary syndrome (PCOS) however, the exact effect of Hsp27 on oocyte maturation and developmental competence in PCOS is unclear. The effect of Hsp27 over-expression was studied in vitro using oocytes derived from PCOS patients. An artificial GFP-plasmid was injected into human oocyte to increase Hsp27 protein level. Oocyte maturation was evaluated by morphological observation. Mature oocytes were fertilized by intracytoplasmic sperm injection (ICSI) and embryonic developmental competence was evaluated. Critical apoptotic factors and cytokines were measured at both the mRNA and protein level. Our results revealed that Overexpression of HSP27 lowered the maturation rate of oocytes derived from PCOS patients. Meanwhile, fertilization rate and high quality embryo rate were similar between the Hsp27 overexpressing group and controls; however, the blastocyst formation rate in this group was significantly higher than control. Expression analysis revealed that the oocyte-secreted factors, BMP15 and GDF9, and the apoptotic-related regulators, Caspase 3, 8 and 9, were all significantly decreased in Hsp27 overexpressing oocytes. In conclusion, upregulation of Hsp27 inhibits oocyte maturation from PCOS patients, but improves embryonic developmental potential.  相似文献   

19.
In horses, successful in vitro fertilization procedures are limited by our inability to consistently mature equine oocytes by in vitro methods. Growth hormone (GH) is an important regulator of female reproduction in mammals, playing an important role in ovarian function, follicular growth and steroidogenesis. The objectives of this research were to investigate: the effects of equine growth hormone (eGH) and insulin-like growth factor-I (IGF-I) on the in vitro maturation (IVM) of equine oocytes, and the effects of eGH in addition to estradiol (E2), gonadotropins (FSH and LH) and fetal calf serum (FCS) on IVM. We also evaluated the cytoskeleton organization of equine oocytes after IVM with eGH. Equine oocytes were aspirated from follicles <30 mm in diameter and matured for 30 h at 38.5°C in air with 5% CO2. In experiment 1, selected cumulus–oocyte complexes (COCs) were randomly allocated as follows: (a) control (no additives); (b) 400 ng/ml eGH; (c) 200 ng/ml IGF-I; (d) eGH + IGF-I; and (e) eGH + IGF-I + 200 ng/ml anti-IGF-I. In addition to these treatment groups, we also added 1 μg/ml E2, 5 IU/ml FSH, 10 IU/ml LH and 10% FCS in vitro (experiment 2). Oocytes were stained with markers for microtubules (anti-α-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and chromatin (TO-PRO3-iodide) and assessed via confocal microscopy. No difference was observed when eGH and IGF-I was added into our IVM system. However, following incubation with eGH alone (40%) and eGH, E2, gonadotropins and FCS (36.6%) oocytes were classified as mature v. 17.6% of oocytes in the control group (P < 0.05). Matured equine oocytes showed that a thin network of filaments concentrated within the oocyte cortex and microtubules at the metaphase spindle showed a symmetrical barrel-shaped structure, with chromosomes aligned along its midline. We conclude that the use of E2, gonadotropins and FCS in the presence of eGH increases the number of oocytes reaching oocyte competence.  相似文献   

20.
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号