首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
These studies investigated the effects of somatostatin on gastric motility in the rainbow trout. Two experimental models were used, the isolated vascularly-perfused stomach and isolated strips of gastrointestinal smooth muscle. Both models demonstrated that somatostatin can inhibit gastrointestinal motility and may therefore modulate gastric emptying in fish.
In the vascularly-perfused stomach, somatostatin (10–1000 n m ) decreased maximum and baseline intragastric pressure by 10–20% in the presence of stimulatory doses of carbachol or 5-hydroxytryptamine. In addition, somatostatin (1 μ m ) inhibited by 50% the magnitude of spontaneous contractions generated by distension. Somatostatin had little effect on the pressure gradient or contractile frequency. These results suggest that somatostatin may negatively modulate gastric emptying in the rainbow trout.
In isolated gastric smooth muscle strips, somatostatin (100 pmol) inhibited tension stimulated by carbachol (circular orientation of muscle) or 5-hydroxytryptamine (longitudinal orientation). These results correlated with those observed in the vascularly perfused stomach preparation. Somatostatin also decreased tension stimulated by carbachol and 5-hydroxytryptamine in intestinal smooth muscle strips, suggesting that under some conditions somatostatin could increase gastric emptying rate by relaxing intestinal musculature.  相似文献   

2.
The effects of juice from Morinda citrifolia (noni) on gastric emptying, gastrointestinal transit, and plasma level of cholecystokinin (CCK) in rats were studied. Male rats were given noni by gavage at levels of 0.25, 1, or 4 ml/kg once per day for one or 7 days. The rats in the control group were given water, while the rats in the experimental group were fasted overnight before measurement of gastrointestinal motility. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal (10%) and Na251CrO4 (0.5 microCi/ml). Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Then, gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Finally, blood samples were collected for measurement of CCK by radioimmunoassay. The administration of noni at 0.25 ml/kg, but not at 1 ml/kg and 4 ml/kg, for 1 day significantly inhibited gastric emptying. In contrast, gastric emptying was significantly inhibited by oral noni (0.25, 1, or 4 ml/kg) for 7 days. Intraperitoneal injection of lorglumide (5 or 10 mg/kg), a selective CCK1 receptor antagonist, effectively attenuated the noni-induced inhibition of gastric emptying. The intestinal transit and body weight, food intake, water intake, urine volume as well as feces weight were not altered by the administration of noni either acutely or chronically, but the administration of oral noni (1 ml/kg) for 7 days increased the level of plasma CCK in male rats. These results suggest that oral noni inhibits gastric emptying in male rats via a mechanism involving stimulation of CCK secretion and CCK1 receptor activation.  相似文献   

3.
Nitric oxide (NO) is an important neurotransmitter in the gut and has been demonstrated to be a key physiological mediator of non-adrenergic non-cholinergic (NANC) relaxation of gastrointestinal smooth muscle. In the present study the effect of PDE 5 inhibitor sildenafil on the gastrointestinal function (gastric emptying and intestinal transit) has been demonstrated in mice. Sildenafil (0.5-2 mg/kg, po) did not alter the percent gastric emptying however, in higher doses (5, 10 and 30 mg/kg, po) it inhibited the gastric emptying. On acute administration (0.5-5 mg/kg, po) it did not alter the intestinal transit but in higher doses (10 and 30 mg/kg, p.o.) delayed the intestinal transit. Further, the inhibitory effect of sildenafil was significantly blocked by L-NAME (10 mg/kg, ip), a non-selective NOS inhibitor and methylene blue (1 mg/kg, ip), a guanylate cyclase inhibitor. These findings suggest the participation of NO-cGMP transduction pathway in the inhibitory effect of sildenafil (higher doses) on the gastrointestinal smooth muscles and its potential application in patients with nutcracker oesophagus, hypertensive lower oesophageal sphincter (LOS), achalsia and diabetic gastroparesis or colitis where there is a loss of nNOS.  相似文献   

4.
Although gastrointestinal complications are common in patients with renal disease, the effects of renal dysfunction on bowel motility and gut transit times are not well known. We assessed gastrointestinal electromyographic activity, gastric emptying rate, orocolonic transit time, oroanal transit time, and xylose absorption before and after surgically inducing a 66% decrease in glomerular filtration rate in dogs. Moderate renal failure induced no gross or microscopic gastrointestinal lesions but caused a 16-42% increase in gastrointestinal motility indexes. We found a 24% decrease in the propagation velocity of the myoelectrical migrating complex in the duodenojejunal segment, a 30% decrease in phase I duration in duodenal and jejunal regions, a 20% increase in the total irregular electrical activity of the small intestine, and a 22% increase in duration of the meal response in the duodenum and jejunum. Renal failure did not change xylose absorption, gastric emptying rate, and orocolonic transit time but decreased colonic transit time by 38%. The mean weight of feces was increased. These results indicate that moderate renal failure alters duodenojejunal motility and decreases colonic transit time.  相似文献   

5.
Regulation of gastrointestinal function by multiple opioid receptors   总被引:3,自引:0,他引:3  
Agonist and antagonist drugs possessing selectivity for individual types of opioid receptors have been employed in vitro and in vivo to determine the mechanisms by which opioids regulate gastrointestinal functions. Selective mu opioid agonists given by intracerebroventricular (i.c.v.) injection, by intrathecal (i.t.) injection, or by peripheral (s.c. or i.v.) injection in rats or mice decreased gastrointestinal transit and motility, inhibited gastric secretion, and suppressed experimentally-induced diarrhea. Selective delta agonists, by contrast, inhibited gastrointestinal transit after i.t., but not after i.c.v. or s.c. administration. Delta agonists also did not alter gastric secretion after i.c.v. or s.c. injection. However, delta agonists exhibited antidiarrheal effects after i.c.v., i.t., or s.c. administration. Kappa agonists given i.c.v. had no effect on gastrointestinal transit in rats or mice or on gastric secretion in rats, but exhibited antidiarrheal effects in mice. The kappa agonist U-50, 488H given peripherally increased gastric acid secretion. Different types of opioid receptors in different anatomical sites influence differently gastrointestinal motility and propulsion, gastric secretion, and mucosal transport. Brain, spinal cord, enteric neural and smooth muscle opioid receptors represent chemosensitive sites for regulation of gastrointestinal function.  相似文献   

6.
目的 探讨高热量饮食对食积大鼠胃肠动力和肠道菌群的影响。方法 SPF级KM小鼠和SD大鼠各20只(雌雄各半),KM小鼠和SD大鼠均随机分为正常组和食积组(每组10只)。每天固定时间称量小鼠体质量,处死后进行胃排空、肠推进和D-木糖试验;大鼠胃窦和十二指肠进行病理学检查;大鼠盲肠菌群进行高通量测序。结果 与正常小鼠相比,食积大鼠体质量增长缓慢,胃肠动力显著下降;高热量饮食并未造成大鼠病理性改变;但食积大鼠Observed-species、Chao1、Simpson和Shannon指数显著下降(均P<0.05),PCoA和LEfSe分析结果显示食积大鼠肠道菌群结构发生显著变化;食积组布劳特菌属、脱硫弧菌属、真杆菌属、红蝽菌属和梭菌属相对丰度显著降低(均P<0.05),Akkermansia和醋弧菌属相对丰度显著上升(均P<0.05)。结论 高热量饮食诱导食积大鼠胃肠动力下降和肠道菌群失衡,为胃肠动力和肠道菌群关系研究提供参考。  相似文献   

7.
Small intestinal bacterial overgrowth (SIBO) may play an important role in the gastrointestinal complications of cystic fibrosis (CF). This work explored two potential factors in development of SIBO in the CF (cftr(tm1UNC)) mouse: impaired Paneth cell innate defenses and altered gastrointestinal motility. Postnatal differentiation of Paneth cells was followed by Defcr, Lyzs, and Ang4 gene expression, and SIBO was measured by quantitative PCR of the bacterial 16S rRNA gene. Paneth cell gene expression was low in 4-day-old CF and wild-type (WT) mice and increased similarly in both groups of mice between 12 and 16 days. Peak Paneth cell gene expression was reached by 40 days of age and was less for Defcr and Lyzs in CF mice compared with WT, whereas Ang4 levels were greater in CF mice. SIBO occurred by postnatal day 8 in CF mice, which is before Paneth cell development. With the use of gavaged rhodamine-dextran to follow motility, gastric emptying in CF mice was slightly decreased compared with WT, and small intestinal transit was dramatically less. Since antibiotics improve weight gain in CF mice, their effects on gastric emptying and small intestinal transit were determined. Antibiotics did not affect gastric emptying or transit in CF mice but did significantly slow intestinal transit in WT mice, suggesting a potential role of normal microflora in regulating transit. In conclusion, small intestinal transit was significantly slower in CF mice, and this is likely a major factor in SIBO in CF.  相似文献   

8.
The prostaglandins PGF, PGE2 and 16,16-dimethyl PGE2, when administered intravenously, orally, subcutaneously or intraduodenally to laparotomized rats, decreased gastric emptying, small intestinal transit and colonic transit as compared to unoperated controls. All three prostaglandins increased colonic transit above that found with unoperated controls. This activity was independent of small intestinal fluid accumulation (i.e., enteropooling) since ligating the ileal-cecal junction had no effect on colonic transit. Small intestinal transit was increased, but not normalized, by PGE2 and 16,16-dimethyl PGE2. 16,16-Dimethyl PGE2 completely restored gastric emptying when given intravenously to laparotomized rats at doses greater than 5.0 μg/kg. This effect on gastric emptying lasted approximately 4 hrs. Thus, 16,16-dimethyl PGE2, when given intravenously, normalized gastric emptying, significantly increased small intestinal transit, and made the colon hypermotile. Prostaglandins may be beneficial in the treatment of post-operative ileus and other conditions of sluggish gastrointestinal propulsion.  相似文献   

9.
Lv SY  Yang YJ  Qin YJ  Xiong W  Chen Q 《Peptides》2011,32(5):978-982
Apelin, as the endogenous ligand for the APJ, regulates many biological functions, including blood pressure, neuroendocrine, drinking behavior, food intake and colonic motility. The present study was designed to investigate the effect of central apelin-13 on gastric emptying and gastrointestinal transit in mice. Intracerebroventricular (i.c.v.) injection of apelin-13 (3 and 10 μg/mouse) decreased gastric emptying rate by 10.9% and 17.1%. This effect was significantly antagonized by the APJ receptor antagonist apelin-13(F13A) and the opioid receptor antagonist naloxone, respectively. However, intraperitoneal (i.p.) injection of apelin-13 (10-100 μg/mouse) did not affect gastric emptying. Apelin-13 (0.3, 1 and 3 μg/mouse, i.c.v.) inhibited gastrointestinal transit by 16.8%, 23.4% and 19.2%. Apelin-13(F13A) and naloxone could also reverse this antitransit effect induced by apelin-13. Taken together, these results suggest that i.c.v. injected apelin-13 inhibits gastric emptying and gastrointestinal transit and it seems that APJ receptor and opioid receptor might be involved in these processes.  相似文献   

10.
Xing DG  Huang X  Li CH  Li XL  Piao LH  Gao L  Zhang Y  Kim YC  Xu WX 《Regulatory peptides》2007,143(1-3):83-89
Natriuretic peptides (NPs) are a cyclic guanosine monophosphate (cGMP) generation system like nitric oxide (NO) and play an inhibitory regulation in gastrointestinal motility but the effect of NPs on muscarinic activity is still unclear. This study was designed to investigate effect of C-type natriuretic peptide (CNP) on muscarinic control of gastric motility and its ion channel mechanism. The spontaneous contraction of gastric smooth muscle strip was recorded by using physiograph in guinea-pig. Membrane currents and potential were recorded by using whole-cell patch-clamp technique. CNP significantly inhibited muscarinic M receptor agonist carbachol (Cch)-induced contractions of gastric smooth muscle strips and dramatically hyperpolarized Cch-induced depolarization of membrane potential in gastric single smooth muscle cell. Muscarinic currents induced by both Cch and GTPgammaS, a G-protein agonist were significantly suppressed by CNP. 8-Br-cGMP mimicked the effect of CNP on Cch-induced muscarinic currents, and the peak holding current was decreased from -200.66+/-54.35 pA of control to -67.35+/-24.82 pA. LY83583, a guanylate cyclase nonspecific inhibitor, significantly weakened the inhibitory effect of CNP on muscarinic current while zaprinast, a cGMP sensitive phosphoesterase inhibitor, potentiated the inhibitory effect of CNP on muscarinic current. cGMP production was dramatically enhanced by CNP and this effect was suppressed by LY83583 in gastric smooth muscle. These results suggest that CNP modulates muscarinic activity via CNP-NPR-particulate guanylate cyclase (pGC)-cGMP pathway in guinea-pig.  相似文献   

11.
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.  相似文献   

12.
Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.  相似文献   

13.
PYY is released from the distal ileum by fat and may be involved in mediating lipid-induced inhibition of gastric acid secretion and intestinal motility. The role of PYY in intestinal lipid-induced inhibition of gastric emptying in awake rats was investigated using a specific polyclonal antibody raised against PYY. METHODS: Gastric emptying of liquids was measured in awake rats fitted with a Thomas gastric cannula. Intralipid (total dose 50 or 100 mg) was perfused for 10 min (0.05 ml/min) into a duodenal (n = 11) or mid-intestinal cannula (60 cm from Ligament of Treitz; n = 8), and gastric emptying was measured over the 5-10 min period. Gastric emptying was measured 15 min after IP injection of PYY (1 nmol/rat). PYY antibody (20 mg) or a control antibody (anti-KLH; keyhole limpet hemocyanin) was injected ip 8-12 h before experiments. RESULTS: Exogenous PYY (1 nmol) inhibited gastric emptying and administration of PYY antibody blocked this response. Perfusion of lipid (50 and 100 mg) into the proximal intestine produced a 46% and 66% inhibition of gastric emptying respectively. Inhibition of gastric emptying in response to 50 mg lipid in the proximal small intestine was unaffected by administration of PYY antibody but was abolished by administration of the CCK A receptor antagonist devazepide (0.1 mg/kg ip). Perfusion of lipid into the distal intestine (50 and 100 mg) inhibited gastric emptying by 10% and 32% respectively. Inhibition of gastric emptying in response to 100 mg lipid in the distal intestine was unaffected by PYY antibody. CONCLUSIONS: Lipid perfused into either the proximal or distal intestine inhibits gastric emptying via a PYY-independent mechanism. CCK is involved in proximal lipid induced inhibition of gastric emptying.  相似文献   

14.
The presence of glucose in the intestinal lumen elicits a number of changes in gastrointestinal function, including inhibition of gastric emptying and food intake and stimulation of pancreatic and intestinal secretion. The present study tested the hypothesis that Na(+)-glucose cotransporter (SGLT)-3, a member of the SGLT family of transport proteins, is involved in detection of luminal glucose in the intestine. Gastric emptying, measured in awake rats, was significantly inhibited by perfusion of the intestine with glucose (60 and 90 mg); this effect was mimicked by alpha-methyl glucose (nonmetabolizable substrate of SGLT-1 and -3) but not 2-deoxy-d-glucose (substrate for GLUT-2) or isoosmotic mannitol. Gastric motility and intestinal fluid secretion, measured in anesthetised rats, were significantly inhibited and stimulated, respectively, by duodenal glucose but not galactose, which has a much lower affinity for SGLT-3 than glucose. Duodenal glucose but not galactose stimulated the release of 5-HT into mesenteric lymph and stimulated the discharge of duodenal vagal afferent fibers. mRNA for SGLT-3 was identified in the duodenal mucosa. Together these data suggest that detection of glucose in the intestine may involve SGLT-3, possibly expressed by enterochromaffin cells in the intestinal mucosa, and release of 5-HT.  相似文献   

15.
In Schistosoma mansoni-infected mice, gastrointestinal transit was measured in vivo and the neuromuscular function of longitudinal muscle strips of inflamed ileum and noninflamed gastric fundus was assessed in vitro. Eight weeks after infection, the ileal wall was acutely inflamed, as shown by a mucosal inflammatory infiltrate, leading to an increase in mucosal thickness, in myeloperoxidase (MPO) activity, and in interleukin (IL)-1beta production. At that time, both gastrointestinal transit and in vitro ileal contractility were normal. Twelve weeks after infection, chronic granulomatous inflammation led to proliferation of the muscle layer and to a further increase in MPO activity, whereas IL-1beta production normalized. Gastrointestinal transit was decreased, whereas in vitro ileal contractility was increased irrespective of the contractile stimulus. In vitro incubation with IL-1beta (10 ng/ml for 60 min) significantly increased ileal contractility only at 8 wk after infection. Indomethacin, tetrodotoxin, and atropine had no differential effect on ileal contractility in controls and infected mice. In vitro contractility of noninflamed gastric fundus was normal both 8 and 12 wk after infection. We conclude that intestinal schistosomiasis 8 wk after infection is associated only with structural changes of the ileum, whereas 12 wk after infection, both structural and functional changes are present. These changes are characterized by increased ileal wall thickness, decreased gastrointestinal transit, and increased smooth muscle contractility restricted to the inflamed gut segment.  相似文献   

16.
Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.  相似文献   

17.
Nociceptin/orphanin FQ/(N/OFQ), a novel heptadecapeptide recently isolated from porcine and rat brain, is the endogenous ligand of the N/OFQ peptide receptor (NOP, previously known as ORL-1). In this study we examined the effects of intracerebroventricularly (icv) injected N/OFQ on gastric emptying, gastrointestinal transit, colonic propulsion and gastric acid secretion in rats. N/OFQ (0.01-10 nmol/rat) significantly delayed gastric emptying of a phenol red meal, inhibited transit of a non-absorbable charcoal marker through the small intestine and increased the mean colonic bead expulsion time. These N/OFQ-motor effects were abolished by the NOP receptor selective antagonist [NPhe(1)]N/OFQ(1-13)-NH(2) (50 nmol/rat), but were unaltered by the classical opioid receptor antagonist, naloxone (9.2 micromol/kg). Icv injected N/OFQ (10 nmol/rat) decreased gastric acid secretion in 2-h pylorus ligated rats in a naloxone sensitive manner. [NPhe(1)]N/OFQ(1-13)-NH(2) (100 nmol/rat) icv administered alone stimulated gastric acid secretion. These results indicate that N/OFQ activates via NOP receptor stimulation a central inhibitory pathway modulating gastrointestinal propulsive activity and gastric acid secretion in rats.  相似文献   

18.
Y-27632, a highly selective inhibitor of p160ROCK, desensitizes the smooth muscle to Ca2+ and inhibits smooth muscle contraction. While this drug has the potential to become a novel drug for hypertension, it might also affect other smooth muscle, including that of gastrointestinal tract. We studied the effects of Y-27632 on gastric contractions in conscious rats. Strain gauge force transducers were sutured onto the serosal side of the gastric antrum and contractions were recorded before and after the intravenous injection of Y-27632. Doses of 1.0 mg/kg to 10 mg/kg significantly decreased contraction amplitude and the motility index in a dose dependent manner. With 10 mg/kg, the mean amplitude was decreased by up to 69 +/- 14% and the motility index by up to 81 +/- 7%. The change occurred immediately after drug infusion and lasted for 3.5h. Contraction frequency showed only a slight decrease. No signs of bowel obstruction were observed. These results indicate that Rho-mediated Ca sensitization has a role in the physiologic contractions of gastric smooth muscle in rats. Y-27632 is useful to investigate the physiology of gastrointestinal motility.  相似文献   

19.
Regulation of gastric emptying   总被引:4,自引:0,他引:4  
Studies carried out in the years since William Beaumont's direct observations of gastric motility have provided increased understanding of the physiological roles of the stomach and of the mechanisms for the regulation of gastric motility. Tonic contractions of the proximal stomach are of primary importance for transfer of liquids from the stomach to the duodenum. Peristaltic contractions of the distal stomach are of primary importance for reducing the size of solid food particles and for transfer of solids to the duodenum. Because gastric emptying requires a net antral-duodenal pressure gradient, contractions of the duodenum also influence the rate of gastric emptying. Gastrointestinal hormones, including gastrin, cholecystokinin, secretin, somatostatin, and others, are released by contact of chyme with the intestinal mucosa, and affect contractions of the proximal stomach, distal stomach, and duodenum. Neural reflexes that arise from the stomach act through autonomic motor nerves to allow regulation by the central nervous system of gastric motility. gamma-Aminobutyric acid, opioids, and bombesin may serve as central neurochemical regulators of gastric motility.  相似文献   

20.
Caffeine is suspected to affect gastrointestinal function. We therefore investigated whether supplementation of a carbohydrate-electrolyte solution (CES) sports drink with 150 mg/l caffeine leads to alterations in gastrointestinal variables compared with a normal CES and water using a standardized rest-exercise-rest protocol. Ten well-trained subjects underwent a rest-cycling-rest protocol three times. Esophageal motility, gastroesophageal reflux, and intragastric pH were measured by use of a transnasal catheter. Orocecal transit time was measured using breath-H(2) measurements. A sugar absorption test was applied to determine intestinal permeability and glucose absorption. Gastric emptying was measured via the (13)C-acetate breath test. In the postexercise episode, midesophageal pressure was significantly lower in the CES + caffeine trial compared with the water trial (P = 0.017). There were no significant differences between the three drinks for gastric pH and reflux during the preexercise, the cycling, and the postexercise episode, respectively. Gastric emptying, orocecal transit time, and intestinal permeability showed no significant differences between the three trials. However, glucose absorption was significantly increased in the CES + caffeine trial compared with the CES trial (P = 0.017). No significant differences in gastroesophageal reflux, gastric pH, or gastrointestinal transit could be observed between the CES, the CES + caffeine, and the water trials. However, intestinal glucose uptake was increased in the CES + caffeine trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号