首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Between 1946 and 1960, a new phenomenon emerged in the field of bacteriology. “Bacterial sex,” as it was called, revolutionized the study of genetics, largely by making available a whole new class of cheap, fast-growing, and easily manipulated organisms. But what was “bacterial sex?” How could single-celled organisms have “sex” or even be sexually differentiated? The technical language used in the scientific press – the public and inalienable face of 20th century science – to describe this apparently neuter organism was explicit: the cells “copulated,” had “intimate contract,” “conjugal unions,” and engaged in “ménage ã trois” relationships. And yet, to describe bacteria as sexually reproducing organisms, the definition of sex itself had to change. Despite manifold contradictions and the availability of alternative language, the notion of sexually active (even promiscuous) single-celled organisms has persisted, even into contemporary textbooks on cell biology and genetics. In this paper I examine the ways in which bacteria were brought into the genetic fold, sexualized, and given gender; I also consider the issues underlying the durability of “bacterial sex.”  相似文献   

2.
Traditional models predict that organisms should allocate to sex based on their condition relative to the condition of their competitors, tracking shifts in mean condition in fluctuating environments, and maintaining an equilibrium sex ratio. In contrast, when individuals are constrained to define their condition absolutely, environmental fluctuations induce fluctuating sex ratios and the evolutionary loss of condition‐dependent sex allocation in short‐lived organisms. Here, we present a simulation model of temperature‐dependent sex determination (TSD) in fluctuating environments that specifically examines the importance of relativity in defining individual condition. When relativity in condition is allowed to evolve, short‐lived organisms evolve switchlike TSD reaction norms and define their condition relative to the annual temperature distribution, thus preventing biased cohort sex ratios in extreme years. Long‐lived organisms also evolve switchlike reaction norms, but define condition less relatively and experience biased cohort sex ratios. The predictions are supported by data from painted turtles, where TSD reaction norms exhibit pivotal temperatures of sex determination that partially track mean annual temperature. Examining relativity in amniotic vertebrates provides a conceptual framework for multifactorial sex determination and suggests new ways of exploring adaptive hypotheses of sex allocation by focusing on the importance of frequency‐dependent selection on sex.  相似文献   

3.
Despite many years of theoretical and experimental work, the explanation for why sex is so common as a reproductive strategy continues to resist understanding. Recent empirical work has addressed key questions in this field, especially regarding rates of mutation accumulation in sexual and asexual organisms, and the roles of negative epistasis and drift as sources of adaptive constraint in asexually reproducing organisms. At the same time, new ideas about the evolution of sexual recombination are being tested, including intriguing suggestions of an important interplay between sex and genetic architecture, which indicate that sex and recombination could have affected their own evolution.  相似文献   

4.
During the evolutionary process of the sex chromosomes, a general principle that arises is that cessation or a partial restriction of recombination between the sex chromosome pair is necessary. Data from phylogenetically distinct organisms reveal that this phenomenon is frequently associated with the accumulation of heterochromatin in the sex chromosomes. Fish species emerge as excellent models to study this phenomenon because they have much younger sex chromosomes compared to higher vertebrates and many other organisms making it possible to follow their steps of differentiation. In several Neotropical fish species, the heterochromatinization, accompanied by amplification of tandem repeats, represents an important step in the morphological differentiation of simple sex chromosome systems, especially in the ZZ/ZW sex systems. In contrast, multiple sex chromosome systems have no additional increase of heterochromatin in the chromosomes. Thus, the initial stage of differentiation of the multiple sex chromosome systems seems to be associated with proper chromosomal rearrangements, whereas the simple sex chromosome systems have an accumulation of heterochromatin. In this review, attention has been drawn to this contrasting role of heterochromatin in the differentiation of simple and multiple sex chromosomes of Neotropical fishes, highlighting their surprising evolutionary dynamism.  相似文献   

5.
Sex allocation theory is often able to make clear predictions about when individuals should facultatively adjust their offspring sex ratio (proportion male) in response to local conditions, but not the consequences for the overall population sex ratio. A notable exception to this is in sex changing organisms, where theory predicts that: (1) organisms should have a sex ratio biased toward the "first" sex: (2) the bias should be less extreme in partially sex changing organisms, where a proportion of the "second" sex matures directly from the juvenile stage; and (3) the sex ratio should be more biased in protogynous (female first) than in protandrous (male first) species. We tested these predictions with a comparative study using data from 121 sex changing animal species spanning five phyla, covering fish, arthropods, echinoderms, molluscs, and annelid worms. We found support for the first and third predictions across all species. The second prediction was supported within the protogynous species (mainly fish), but not the protandrous species (mainly invertebrates).  相似文献   

6.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

7.
The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex‐determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex‐determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings.  相似文献   

8.
Hadany L  Otto SP 《Genetics》2007,176(3):1713-1727
Facultatively sexual organisms often engage in sex more often when in poor condition. We show that such condition-dependent sex carries evolutionary advantages and can explain the evolution of sexual reproduction even when sex entails high costs. Specifically, we show that alleles promoting individuals of low fitness to have sex more often than individuals of high fitness spread through a population. Such alleles are more likely to segregate out of bad genetic backgrounds and onto good genetic backgrounds, where they tend to remain. This "abandon-ship" mechanism provides a plausible model for the evolution and maintenance of facultative sex.  相似文献   

9.
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms.  相似文献   

10.
Jaffe K 《Acta biotheoretica》2000,48(2):137-147
Using computer simulations I studied the simultaneous effect of variable environments, mutation rates, ploidy, number of loci subject to evolution and random and assortative mating on various reproductive systems. The simulations showed that mutants for sex and recombination are evolutionarily stable, displacing alleles for monosexuality in diploid populations mating assortatively under variable selection pressure. Assortative mating reduced excessive allelic variance induced by recombination and sex, especially among diploids. Results suggest a novel adaptive value for sex and recombination. They show that the adaptive value of diploidy and that of the segregation of sexes is different to that of sex and recombination. The results suggest that the emergence of sex had to be preceded by the emergence of diploid monosexual organisms and provide an explanation for the emergence and maintenance of sex among diploids and for the scarcity of sex among haploid organisms.  相似文献   

11.
Precise, highly female-biased sex ratios in a social spider   总被引:4,自引:0,他引:4  
It has been recognized for some time that the risk of producing maleless clutches should select for a lower than binomial variance in the sex ratio of organisms with female-biased sex ratios, small clutches and breeding groups containing the clutch of a single female. However, to date, precise sex ratios have only been reported for organisms with haplodiploid sex determination, a system which allows direct control of the sex of individual offspring. In contrast, under heterogametic sex determination chance is expected to play a crucial role in determining the sex composition of any one family, in particular when males are the heterogametic sex. Here, we present evidence of precise or underdispersed primary sex ratios in the Neotropical social spider Anelosimus domingo Levi. We show that this diplodiploid species with male heterogamety has not only beaten the odds of meiosis by producing mostly daughters, but has also attained relative precision in the proportion of sons and daughters produced in any one clutch. The latter finding suggests the existence of mechanisms that allow sorting of the two types of sperm in this spider species.  相似文献   

12.
13.
This article develops a simplified set of models describing asexual and sexual replication in unicellular diploid organisms. The models assume organisms whose genomes consist of two chromosomes, where each chromosome is assumed to be functional if it is equal to some master sequence σ0, and non-functional otherwise. We review the previously studied case of selective mating, where it is assumed that only haploids with functional chromosomes can fuse, and also consider the case of random haploid fusion. When the cost for sex is small, as measured by the ratio of the characteristic haploid fusion time to the characteristic growth time, we find that sexual replication with random haploid fusion leads to a greater mean fitness for the population than a purely asexual strategy. However, independently of the cost for sex, we find that sexual replication with a selective mating strategy leads to a higher mean fitness than the random mating strategy. The results of this article are consistent with previous studies suggesting that sex is favored at intermediate mutation rates, for slowly replicating organisms, and at high population densities. Furthermore, the results of this article provide a basis for understanding sex as a stress response in unicellular organisms such as Saccharomyces cerevisiae (Baker’s yeast).  相似文献   

14.
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non‐model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.  相似文献   

15.
Clonal organisms persist at a range of population sex ratios, from equal numbers of males and females to single-sex systems. When intersexual competition is strong enough to drive one sex locally extinct, the maintenance of the sexes is facilitated by the semi-independent dynamics of populations within a metapopulation. These semi-independent dynamics are influenced by dispersal and recolonization rates, which are affected by the spatial arrangement of populations. To establish the quantitative relationship between spatially complex metapopulations and the maintenance of the sexes, we used a mathematical model of the liverwort Marchantia inflexa. This clonal organism is found in discrete patches on rocks and along the banks of streams, which form single-sex and two-sex metapopulations. In this system, asexual propagules mainly disperse short distances. Long-distance between-patch dispersal and recolonization mainly occurs via sexual propagules, which require both sexes to be present. Dispersal of these two types of propagules could interact with the spatial arrangement of populations to affect the maintenance of the sexes. With our mathematical model, we found that at intermediate distances between populations, metapopulations maintained both sexes, and the spatial arrangement of populations changed the threshold at which one sex was lost. On the other hand, when populations were close to one another, one sex was lost and the single-sex metapopulation persisted through dispersal of asexual propagules. When populations were far apart, one sex was lost, and the metapopulation either went extinct due to lack of recolonization by asexual propagules or persisted because clumped populations facilitated recolonization. These idealized spatial arrangements help clarify the effects of the spatial arrangement on the maintenance of the sexes and the persistence of metapopulations of clonal organisms, which can help explain geographic parthenogenesis and the distribution of asexual populations, the persistence of asexual species, and inform the conservation of clonal organisms.  相似文献   

16.
Sex determination and differentiation are inherently fascinating to both layperson and geneticist. Major advances have accelerated interest in the molecular genetic events mediating these processes in nematodes, flies, mice and humans. Far less attention has been paid to those organisms, particularly reptiles, where sex is determined by environmental cues. However, recent experimental evidence suggests that the two modes of sex determination may not only share common genetic elements, but may also be regulated by similar mechanisms. We argue that the ability to manipulate sex by temperature provides a particularly suitable model for exploring the molecular basis of this fundamental biological process.  相似文献   

17.
Despite substantial evidence for sex differences in addiction epidemiology, addiction‐relevant behaviors and associated neurobiological phenomena, the mechanisms and implications of these differences remain unknown. Genetic analysis in model organism is a potentially powerful and effective means of discovering the mechanisms that underlie sex differences in addiction. Human genetic studies are beginning to show precise risk variants that influence the mechanisms of addiction but typically lack sufficient power or neurobiological mechanistic access, particularly for the discovery of the mechanisms that underlie sex differences. Our thesis in this review is that genetic variation in model organisms are a promising approach that can complement these investigations to show the biological mechanisms that underlie sex differences in addiction.  相似文献   

18.
有性生殖是多细胞生物的一个重要特征,最常见的就是人类的性染色体X和Y。性别决定(Sex determination)系统有着悠久的起源,在高等生物进化的历程中,不同物种采用的性别决定方式大相径庭,而同源转录因子在不同生物体内的功能和调控方式也是有区别的,比如DMRT转录因子家族,这说明性别决定机制具有高度多样性。本文介绍了近年来发现的具有代表性的性别决定相关的基因的发现过程,总结了性别决定相关转录调控因子的功能和结构方面的研究成果,从结构生物学视角来展望未来的研究方向,为进一步探索生物体内这一重大进程提供新思路。  相似文献   

19.
Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research.  相似文献   

20.
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号