首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

2.
3.
Understanding the mechanisms of the apoptotic and anti apoptotic processes may lead to a better way to control these cascades. Here we demonstrated for the first time the feasibility to express a short functional peptide in mammalian cells that abrogates the apoptosis cascade through interference with the proteolytic activity of the initiator caspase 9 and the executing caspase 3 enzymes. The expression of a short peptide that includes the pseudo-substrate motif of the apoptosis inhibitor protein P35 (Asp-Gln-Met-Asp) leads to the abrogation of cell death induced through either the mitochondrial or the death receptors pathways.Short open reading frames have been detected in several mammalian mRNAs, primarily upstream of the main long reading frame (uORFs), however, direct evidence for de-novo peptides translation has not been provided. Utilizing biochemical and imaging techniques we demonstrate here that the functional recombinant peptide was localized to the cytpoplasmic fraction of the cell.In conclusion, this work demonstrates that ribosomes recognize short ORFs to translate stable short recombinant peptides in mammalian cells. Expression of these intracellular peptides results in the knock down of apoptotic processes to generate apoptosis resistant stable cells.  相似文献   

4.
We have recently shown that poly(A)-binding protein (PABP) is cleaved during poliovirus and Coxsackievirus infection by viral 3Cprotease and that 3Cprotease modification of a subset of PABP can result in significant translation inhibition. During apoptosis, translation undergoes significant down-regulation that correlates with caspase-3 mediated cleavage of several translation factors, including eIF4G, 4EBP1 and eIF2alpha. The fate of PABP in apoptotic cells has not yet been examined. Here we show that PABP levels decline significantly via proteolytic degradation in apoptotic HeLa, Jurkat and MCF7 cells. The degradation of PABP correlated with translation inhibition but lagged behind cleavage of eIF4GI. In apoptotic MCF7 cells translation inhibition occurred without modification of most translation factors and correlated with PABP degradation. PABP was not cleaved during incubation with several caspases, yet caspase 3 induced weak PABP degradative activity in cells lysates. Both the caspase inhibitor zVAD and calpain inhibitors blocked PABP cleavage in vivo, while the proteosome inhibitor MG132 induced PABP degradation. Protease(s) activated during apoptosis preferentially degraded PABP associated with ribosomes and translation factors, but not PABP in other cellular compartments. The data suggest that targeted degradation of PABP contributes to translation inhibition in apoptotic cells.  相似文献   

5.
Intact fibronectin (FN) protects cells from apoptosis. When FN is fragmented, specific domains induce proteinase expression in fibroblasts. However, it is not known whether specific domains of FN can also regulate apoptosis. We exposed fibroblasts to four recombinant FN fragments and then assayed for apoptosis using criteria of cellular shape change, condensed nuclear morphology, and DNA fragmentation. The fragments extended from the RGD-containing repeat III10 to III15; they included (V(+)) or excluded (V(-)) the alternatively spliced V region and contained either a mutated (H(-)) or an unmutated (H(+)) heparin binding domain. Only the V(+)H(-) fragment triggered decreases in pp125(FAK) levels and apoptosis, which was rescued by intact FN and inhibitors of caspase-1 and caspase-3. This apoptotic mechanism was mediated by a chondroitin sulfate proteoglycan, since treating cells with chondroitin sulfate or chondroitinase reversed the apoptotic cell shape changes. The alpha4 integrin receptor may also be involved, since using a blocking antibody to alpha4 alone induced apoptotic cell shape changes, whereas co-treatment with this antibody plus V(+)H(+) reversed these effects. These results demonstrate that the V and heparin binding domains of FN modulate pp125(FAK) levels and regulate apoptosis through a chondroitin sulfate proteoglycan- and possibly alpha4 integrin-mediated pathway, which triggers a caspase cascade.  相似文献   

6.
Caspases orchestrate the controlled demise of a cell after an apoptotic signal through specific protease activity and cleavage of many substrates altering protein function and ensuring apoptosis proceeds efficiently. Comparing a variety of substrates of each apoptotic caspase (2, 3, 6, 7, 8, 9 and 10) showed that the cleavage sites had a general motif, sometimes specific for one caspase, but other times specific for several caspases. Using commercially available short peptide-based substrates and inhibitors the promiscuity for different cleavage motifs was indicated, with caspase-3 able to cleave most substrates more efficiently than those caspases to which the substrates are reportedly specific. In a cell-free system, immunodepletion of caspases before or after cytochrome c-dependent activation of the apoptosome indicated that the majority of activity on synthetic substrates was dependent on caspase-3, with minor roles played by caspases-6 and -7. Putative inhibitors of individual caspases were able to abolish all cytochrome c-induced caspase activity in a cell-free system and inhibit apoptosis in whole cells through the extrinsic and intrinsic pathways, raising issues regarding the use of such inhibitors to define relevant caspases and pathways. Finally, caspase activity in cells lacking caspase-9 displayed substrate cleavage activity of a putative caspase-9-specific substrate underlining the lack of selectivity of peptide-based substrates and inhibitors of caspases.  相似文献   

7.
A single chicken anemia virus protein induces apoptosis.   总被引:38,自引:0,他引:38       下载免费PDF全文
Chicken anemia virus (CAV) causes cytopathogenic effects in chicken thymocytes and cultured transformed mononuclear cells via apoptosis. Early after infection of chicken mononuclear cells, the CAV-encoded protein VP3 exhibits a finely granular distribution within the nucleus. At a later stage after infection, VP3 forms aggregates. At this point, the cell becomes apoptotic and the cellular DNA is fragmented and condensed. By immunogold electron microscopy VP3 was shown to be associated with apoptotic structures. In vitro, expression of VP3 induced apoptosis in chicken lymphoblastoid T cells and myeloid cells, which are susceptible to CAV infection, but not in chicken embryo fibroblasts, which are not susceptible to CAV. Expression of a C-terminally truncated VP3 induced much less pronounced apoptosis in the chicken lymphoblastoid T cells.  相似文献   

8.
Imaging apoptotic cells or tissues after cancer therapy in situ would be a very useful tool for assessing proper treatment conditions and therapeutic outcome. By combining therapeutic and imaging functions, we have designed a multifunctional, membrane-permeable, and cancer-specific agent that triggers and images apoptosis in targeted cells. We chose photodynamic therapy (PDT) as an appropriate cancer treatment modality and caspase 3 as an apoptosis-specific imaging target. This targeted photodynamic therapy agent with a built-in apoptosis sensor (TaBIAS) induces photodamage only to target cells and simultaneously identifies those that are apoptotic by its near-infrared fluorescence. It contains a fluorescent photosensitizer used as an anticancer drug and a cancer-associated folate receptor homing molecule connected to a caspase 3 cleavable peptide linker that has a fluorescence quencher on the opposing site. We demonstrated that PDT-triggered cleavage of the peptide linker by caspase 3, one of the key executioner caspases, results in a detectable increase in fluorescence in folate receptor-overexpressing cancer cells and tumors. The presence of apoptosis was confirmed in vitro by flow cytometry and ex vivo by Apoptag assay, supporting the ability of TaBIAS to specifically induce and image apoptosis in situ.  相似文献   

9.
Cell death by apoptosis can be caused by the DNA mutagen UV light whose exposure causes the direct activation of both the caspase 9 regulated cell damage intrinsic pathway and the caspase 8 regulated plasma membrane extrinsic pathway. We determined that increased activity of the plasma membrane phospholipid scramblase, PLSCR1, amplified UV mediated apoptosis primarily through the activation of the intrinsic apoptotic pathway. The caspase 8 inhibitor z-IETD-fmk was not as effective an inhibitor of PLSCR1 augmented UV induced apoptosis compared to treatment with caspase 3, caspase 9, or pan-caspase inhibitors. The inability of the caspase 8 inhibitor to decrease UV induced apoptosis was dependent on PLSCR1, as UV induced apoptosis was decreased by a similar amount in the control cells in the presence of inhibitors of caspase 8, caspase 9, caspase 3, or the pan-caspase inhibitor. PKC-delta directly phosphorylates human PLSCR1 resulting in increased PLSCR1 scramblase activity. PKC-delta can also be activated by caspase mediated cleavage resulting in the release of a constitutively active kinase domain. We observed that replacing the PKC-delta phosphorylation site of PLSCR1 with an alanine did not affect the ability of PLSCR1 to enhance UV induced apoptosis implying that PKC-delta does not directly phosphorylate PLSCR1 to increase plasma membrane scramblase activity during apoptosis. Cells transfected with a PLSCR1 mutant that contained an alanine substitution at its known PKC-delta phosphorylation site underwent UV induced apoptosis at a level similar to those transfected with wild type PLSCR1. The combined results indicate that UV exposure in cells possessing PLSCR1 increases apoptosis primarily by enhancement of the intrinsic apoptotic pathway, and also imply that the increased apoptosis observed upon exposure to UV light is not through direct phosphorylation of PLSCR1 by PKC-delta.  相似文献   

10.
Caspases are a family of cysteine-proteases, activated upon several different stimuli, which execute apoptosis in many cell death models. Previous work of our group has shown rats have the highest rate of apoptosis during the first wave of spermatogenesis (between 20 and 25 days after birth), as evaluated by TUNEL and caspase activity. However, the hierarchical order of caspase activation and the relevance of each caspase during germ cell apoptosis are not clear. Thus, the goal of this work is to take a pharmacological approach to dissect the apoptosis pathway of caspase activation. Results showed that intratesticular injection of a caspase-8 inhibitor (z-IETD-fmk), or a pan-caspase inhibitor (z-VAD- fmk), significantly decreased the cleavage of p115 and PARP, two endogenous substrates of caspases, in 22-day-old rats. Additionally, these inhibitors promoted a significant reduction in the number of apoptotic germ cells. On the other hand, intratesticular injection of two different inhibitors of the intrinsic pathway (z-LEHD-fmk and minocycline) did not have any effect upon caspase substrates cleavage (p115 and PARP) or the number of apoptotic germ cells. Therefore, we conclude that the extrinsic pathway of apoptosis plays an important role in physiological germ cell apoptosis during the first round of spermatogenesis in the rat.  相似文献   

11.
Caspase activation and proteolytic cleavage of specific target proteins represents an integral step in the pathway leading to the apoptotic death of cells. Analysis of caspase activity in intact cells, however, has been generally limited to the measurement of end-point biochemical and morphological markers of apoptosis. In an effort to develop a strategy with which to monitor caspase activity, early in the cell death cascade and in real-time, we have generated cell lines that overexpress recombinant GFP-based caspase substrates that display a quantifiable change in their spectral properties when cleaved by group II caspases. Specifically, tandem GFP substrates linked by a caspase-sensitive cleavage site show diminished fluorescence resonance energy transfer (FRET), as a consequence of cleavage, due to physical separation of the GFP moieties in apoptotic cells. We have evaluated the influence of different caspase-sensitive linkers on both FRET efficiency and cleavage by caspase-3. We also demonstrate that caspase activity as well as inhibition by pharmacological agents can be monitored, with minimal manipulation, in intact adherent cells seeded in a 96-well cell culture dish. Finally, we have adapted this technology to a high throughput screening platform to identify novel small molecule and cell permeable inhibitors of apoptosis. Based on a biochemical analysis of the compounds identified it is clear that this assay can be used to detect drugs which inhibit caspases directly as well as those which target upstream components of the caspase cascade.  相似文献   

12.
The sensitivity of normal diploid Syrian hamster embryo (SHE) cells to apoptosis was tested after treatment with the topoisomerase inhibitors camptothecin and etoposide and after serum withdrawal. Programmed cell death (PCD) was identified through morphological, biochemical, and molecular changes and compared with that of HL60 cell line. The results showed that topoisomerase inhibitors, which were shown to be potent PCD inducers in the HL60 cell line, induced a weaker apoptotic response in SHE cells than after growth factor deprivation. In addition, serum-free medium, which rapidly induced apoptosis in SHE cells, did not affect the HL60 cell line. In both cell types, PCD was expressed by condensed chromatin, fragmented nuclei, and DNA laddering on electrophoretic gels, an indisputable sign of apoptosis. In apoptotic HL60 cells, the cleavage of 113-kDa poly(ADP-ribose)polymerase (PARP) resulted in the so-called apoptotic 89-kDa fragment and was associated with increased caspase-3 activity. In apoptotic SHE cells, PARP degraded early but the degradation profile was not characterized by the appearance of an 89-kDa fragment. Moreover, no activation of caspase-3 was noted. ZnCl(2), which is known to prevent protease activity responsible for apoptosis features, inhibited PARP cleavage and nuclear modifications induced by apoptotic stimuli in both cell types, but with a higher sensitivity in SHE cells. Apoptosis induced by serum deprivation was linked with c-myc negative regulation in SHE cells, but not with p53 protein accumulation, while topoisomerase inhibitors led to p53 stabilization without any change in c-myc expression. Serum-free medium and topoisomerase inhibitors did not modify c-myc expression in the HL60 cell line. The overall results demonstrated that apoptosis, which is a carefully regulated process of cell death, may proceed through mechanisms varying according to cell type or apoptosis inducer. In addition, markers which are generally considered hallmarks of apoptosis may fail to appear in some cell types.  相似文献   

13.
BACKGROUND: Ovaries consist of numerous follicles, oocytes, and granulosa cells in different stages of development. Many of these follicles will undergo an apoptotic process during the lifetime of the animal. By using proper tissue preparation methods, the events within the whole ovary can be observed by using 3D confocal microscopy. METHODS: Whole ovaries were stained with LysoTracker Red (LT), fixed with 4% paraformaldehyde (PF) and 1% glutaraldehyde (Glut), dehydrated with methanol (MEOH), and cleared with benzyl alcohol and benzyl benzoate (BABB). Using this tissue preparation technique, the ovary becomes relatively transparent, allowing its morphology to be observed with confocal microscopes. A spectral imaging system (PARISS) located on a conventional microscope was used to interpret the LT dye spectra and fixation products in the tissues with different excitation wavelengths. RESULTS: Apoptosis in the follicle was detected as clusters of intensely stained granulosa cells located in close proximity to the oocytes. The fixation with Glut and PF preserved morphological details, increased tissue fluorescence, thus increased the signal to noise of the background image. CONCLUSIONS: Thick tissues can be imaged after they are properly stained, aldehyde fixed, and BABB cleared. LT intensely stained single cells or clusters of apoptotic cells in the follicles and the nucleolus. Spectral differences between LT as an indicator of apoptosis and Glut-PF fixation was used to visualize ovarian morphology and apoptosis. The PARISS spectrophotometer revealed spectral peaks for LT at 609.6 nm and for Glut-PF at 471.3 nm. The proper use of the spectra from these fluorescence molecules is the foundation for high quality morphological images of apoptosis. By sequentially imaging the two probes with a 488 nm laser and a 543/568 nm laser, there was a reduction in fluorescent cross talk and an increase in image quality.  相似文献   

14.
BACKGROUND: Early loss of neurites followed by delayed damage of neuronal somata is a feature of several neurodegenerative diseases. Death by apoptosis would ensure the rapid removal of injured neurons, whereas conditions that prevent apoptosis may facilitate the persistence of damaged cells and favor inflammation and disease progression. MATERIALS AND METHODS: Cultures of cerebellar granule cells (CGC) were treated with microtubule disrupting agents. These compounds induced an early degeneration of neurites followed by apoptotic destruction of neuronal somata. The fate of injured neurons was followed after co-exposure to caspase inhibitors or agents that decrease intracellular ATP (deoxyglucose, S-nitrosoglutathione, 1-methyl-4-phenylpyridinium). We examined the implications of energy loss for caspase activation, exposure of phagocytosis markers, and long-term persistence of damaged cells. RESULTS: In CGC exposed to colchicine or nocodazole, axodendritic degeneration preceded caspase activation and apoptosis. ATP-depleting agents or protein synthesis inhibition prevented caspase activation, translocation of the phagocytosis marker, phosphatidylserine, and apoptotic death. However, they did not affect the primary neurite loss. Repletion of ATP by enhanced glycolysis restored all apoptotic features. Peptide inhibitors of caspases also prevented the apoptotic changes in the cell bodies, although the axodendritic net was lost. Under this condition cell demise still occurred 48 hr later in a caspase-independent manner and involved plasma membrane lysis at the latest stage. CONCLUSIONS: Inhibition of the apoptotic machinery by drugs, energy deprivation, or endogenous mediators may result in the persistence and subsequent lysis of injured neurons. In vivo, this may favor the onset of inflammatory processes and perpetuate neurodegeneration.  相似文献   

15.
Apaf1 is a critical molecule in the mitochondria-dependent apoptotic pathway. Here we show that Apaf1-deficient embryonic fibroblasts died at a later phase of apoptotic induction, although these cells were resistant to various apoptotic stimulants at an early phase. Neither caspase 3 activation nor nuclear condensation was observed during this cell death of Apaf1-deficient cells. Electron microscopic examination revealed that death in response to apoptotic stimulation resembled necrosis in that nuclei were round and swollen with low electron density. Necrosis-like cell death was also observed in wild-type cells treated with z-VAD-fmk. Mitochondria were not only morphologically abnormal but functionally affected, since mitochondrial transmembrane potential (DeltaPsim) was lost even in cells with intact plasma membrane integrity. These mitochondrial alterations were also observed in the wild-type cells dying of apoptosis. Combined, these data suggest that cells without caspase activation, such as Apaf1-deficient cells or cells treated with caspase inhibitors, die of necrosis-like cell death with mitochondrial damage in response to "apoptotic stimulation."  相似文献   

16.
Small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cells both initiate apoptotic signaling, resulting in caspase activation, after treatment with anti-cancer agents. However, in contrast to SCLC cells, NSCLC cells do not fully execute apoptosis. The apoptotic process in NSCLC cells seems to be blocked downstream of caspase activation, thus the failure of NSCLC cells to execute apoptosis could result from inhibition of active caspases by inhibitor of apoptosis proteins (IAPs). Here we investigate the mRNA and protein expression of IAPs in a panel of SCLC and NSCLC cell lines. The NSCLC cell lines had a stronger cIAP-2 expression at both mRNA and protein levels, while the SCLC cell lines had a higher level of XIAP protein. Expression of cIAP-1, cIAP-2, and XIAP, the most potent caspase inhibitors, was further investigated in three lung carcinoma cell lines after treatment with 8 Gy of ionizing radiation or etoposide (VP16). In response to treatment, the level of IAPs was not altered in a way that explained the differences in cellular chemo- and radiosensitivity. The intracellular localization of IAPs was analyzed in untreated and treated lung cancer cells. Surprisingly, we found that cIAP-2 was mainly detected in the mitochondrial fraction, although the function of this protein in mitochondria is unknown. No major relocalization of IAPs was observed after treatment. Taken together, these results indicate that IAPs alone are not the main factor responsible for the resistance of NSCLC cells to treatment.  相似文献   

17.
Sporadic apoptosis of tumour cells is a commonly observed feature of colorectal cancer (CRC) and strongly correlates with adverse patient prognosis. The uptake of apoptotic cell debris by neutrophils induces a non-inflammatory, pro-regenerative, and hence potentially pro-tumorigenic phenotype. In this study, we therefore sought to investigate the impact of apoptotic CRC cells on neutrophils and its consequence on other immune cells of the tumour microenvironment. Apoptosis induced by combined TNFα-treatment and UV-C irradiation, as well as various chemotherapeutic agents, led to a substantial release of neutrophil-attracting chemokines, most importantly interleukin-8 (IL-8), in both primary patient-derived and established CRC cells. Accordingly, conditioned media of apoptotic tumour cells selectively stimulated chemotaxis of neutrophils, but not T cells or monocytes. Notably, caspase-inhibition partially reduced IL-8 secretion, suggesting that caspase activity might be required for apoptosis-induced IL-8 release. Moreover, apoptotic tumour cell-conditioned media considerably prolonged neutrophil lifespan and induced an activated CD66bhighCD11bhighCD62Llow phenotype, comparable to that of tumour-associated neutrophils in CRC patients, as assessed by flow cytometry of dissociated CRC tissues. Immunohistochemical analyses of 35 CRC patients further revealed a preferential accumulation of neutrophils at sites of apoptotic tumour cells defined by the expression of epithelial cell-specific caspase-cleaved cytokeratin-18. The same areas were also highly infiltrated by macrophages, while T cells were virtually absent. Notably, neutrophils induced an M2-like CD86lowCD163+CD206+ phenotype in co-cultured monocyte-derived macrophages and suppressed LPS-induced pro-inflammatory cytokine release. In an in vitro transwell model, IL-8 blockade efficiently prevented neutrophil-induced anti-inflammatory macrophage polarisation by inhibiting neutrophil migration towards IL-8 gradients generated by apoptotic CRC cells. To conclude, our data suggest that apoptotic cancer cells release chemotactic factors that attract neutrophils into the tumour, where their interaction with neighbouring macrophages might promote an immunologically unfavourable tumour microenvironment. This effect may contribute to tumour recurrence after chemotherapy-induced apoptosis.Subject terms: Cancer microenvironment, Cell death and immune response  相似文献   

18.
Eukaryotic cell nucleolus is a highly dynamic structure, which is sensitive to all changes within or outside cell borders. Numerous data are available on changes of the nucleolar structure and functions under different treatments. However, almost nothing is known about the action of translation inhibitors on the nucleolus, although these substances, together with TNF-alpha, are commonly used for apoptosis induction, both for scientific and therapeutic purposes. Emetine is one of such inhibitors. We have shown that emetine suppresses cell viability, decreases mitotic index, and induces apoptosis in HeLa cells. Emetine action is irreversible, and it sensitizes cells to unfavourable external conditions. The emetine action causes redistribution of UBF, one of RNA-polymerase I factor, from the nucleolus to nucleoplasm even after a short exposure, i.e. when the morphology of the nucleus and chromatin still keeps its native pattern. It is important that other nucleolar proteins, such as fibrillarin and B23, are not recognized in the nucleoplasm until the very late stages of apoptotic process. A suggestion is made that changes in UBF localization may be associated with the onset of ribosomal repeat cleavage and migration of rDNA-"free" fragments from the nucleolus to nucleoplasm. It looks likely that these changes can serve as an initial morphological indication of apoptosis.  相似文献   

19.
In recent years, several inhibitors that prevent caspase activation and apoptosis have emerged. At high doses, however, these inhibitors can have nonspecific effects and/or become cytotoxic. In this study, we determined the effectiveness of broad spectrum caspase inhibitors to prevent apoptosis. A carboxy terminal phenoxy group conjugated to the amino acids valine and aspartate (Q-VD-OPh) potently inhibited apoptosis. Q-VD-OPh was significantly more effective in preventing apoptosis than the widely used inhibitors, ZVAD-fmk and Boc-D-fmk, and was also equally effective in preventing apoptosis mediated by the three major apoptotic pathways, caspase 9/3, caspase 8/10, and caspase 12. In addition to the increased effectiveness, Q-VD-OPh was not toxic to cells even at extremely high concentrations. Our data indicate that the specificity, effectiveness, and reduced toxicity of caspase inhibitors can be significantly enhanced using carboxyterminal o-phenoxy groups and may have important uses in vivo.  相似文献   

20.
Surviving apoptosis   总被引:4,自引:0,他引:4  
The concept that cells subjected to chromatin cleavage during apoptosis are destined to die is being challenged. The execution phase of apoptosis is characterized by the activation of effector caspases, such as caspase-3, that cleave key regulatory or structural proteins and in particular activate apoptotic nucleases such as the caspase activated deoxyribonuclease (CAD). It is apparent that caspases of this type may become active both through non-apoptotic processing and potentially within cells that exhibit apoptotic morphology but are subsequently able to survive. In such systems caspase suppressor molecules, the inhibitors of apoptotic proteins or IAP's, may rescue cells from apoptotic nuclease(s) attack initiated by transient caspase activation. The MLL gene is involved in leukemogenic translocations in ALL and AML and is a target of nuclease cleavage during apoptosis. Translocations initiated at the site of apoptotic nuclease attack within MLL have been identified and may offer a model, with clinical relevance, for DNA damage mediated by the apoptosis system in cells destined to survive. The specificity of apoptotic cleavage combined with the potential for recovery from the execution phase of apoptosis suggests a novel and pathogenic role for apoptosis in creating translocations with leukemogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号