首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Banta S  Swanson BA  Wu S  Jarnagin A  Anderson S 《Biochemistry》2002,41(20):6226-6236
The strict cofactor specificity of many enzymes can potentially become a liability when these enzymes are to be employed in an artificial metabolic pathway. The preference for NADPH over NADH exhibited by the Corynebacterium 2,5-diketo-D-gluconic acid (2,5-DKG) reductase may not be ideal for use in industrial scale vitamin C biosynthesis. We have previously reported making a number of site-directed mutations at five sites located in the cofactor-binding pocket that interact with the 2'-phosphate group of NADPH. These mutations conferred greater activity with NADH upon the Corynebacterium 2,5-DKG reductase [Banta, S., Swanson, B. A., Wu, S., Jarnagin, A., and Anderson, S. (2002) Protein Eng. 15, 131-140; (1)]. The best of these mutations have now been combined to see if further improvements can be obtained. In addition, several chimeric mutants have been produced that contain the same residues as are found in other members of the aldo-keto reductase superfamily that are naturally able to use NADH as a cofactor. The most active mutants obtained in this work were also combined with a previously reported substrate-binding pocket double mutant, F22Y/A272G. Mutant activity was assayed using activity-stained native polyacrylamide gels. Superior mutants were purified and subjected to a simplified kinetic analysis. The simplified kinetic analysis was extended for the most active mutants in order to obtain the kinetic parameters in the full-ordered bi bi rate equation in the absence of products, with both NADH and NADPH as cofactors. The best mutant 2,5-DKG reductase produced in this work was the F22Y/K232G/R238H/A272G quadruple mutant, which exhibits activity with NADH that is more than 2 orders of magnitude higher than that of the wild-type enzyme, and it retains a high level of activity with NADPH. This new 2,5-DKG reductase may be a valuable new catalyst for use in vitamin C biosynthesis.  相似文献   

2.
Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified.  相似文献   

3.
A screening method has been developed to support randomized mutagenesis of amino acids in the cofactor-binding pocket of the NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase. Such an approach could enable the isolation of an enzyme that can better catalyze the reduction of 2,5-DKG to 2-keto-L-gulonic acid (2-KLG) using NADH as a cofactor. 2-KLG is a valuable precursor to ascorbic acid, or vitamin C, and an enzyme with increased activity with NADH may be able to improve two potential vitamin C production processes. Previously we have identified three amino acid residues that can be mutated to improve activity with NADH as a cofactor. As a pilot study to show feasibility, a library was made with these three amino acids randomized, and 300 random colonies were screened for increased NADH activity. The activities of seven mutants with apparent improvements were verified using activity-stained native gels, and sequencing showed that the amino acids obtained were similar to some of those already discovered using rational design. The four most active mutants were purified and kinetically characterized. All of the new mutations resulted in apparent kcat values that were equal to or higher than that of the best mutant obtained through rational design. At saturating levels of cofactor, the best mutant obtained was almost twice as active with NADH as a cofactor as the wild-type enzyme is with NADPH. This screen is a valuable tool for improving 2,5-DKG reductase, and it could easily be modified for improving other aspects of this protein or similar enzymes.  相似文献   

4.
The NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme is a required component in some novel biosynthetic vitamin C production processes. This enzyme catalyzes the conversion of 2,5-DKG to 2-keto-L-gulonic acid, which is an immediate precursor to L-ascorbic acid. Forty unique site-directed mutations were made at five residues in the cofactor-binding pocket of 2,5-DKG reductase A in an attempt to improve its ability to use NADH as a cofactor. NADH is more stable, less expensive and more prevalent in the cell than is NADPH. To the best of our knowledge, this is the first focused attempt to alter the cofactor specificity of a member of the aldo-keto reductase superfamily by engineering improved activity with NADH into the enzyme. Activity of the mutants with NADH or NADPH was assayed using activity-stained native polyacrylamide gels. Eight of the mutants at three different sites were identified as having improved activity with NADH. These mutants were purified and subjected to a kinetic characterization with NADH as a cofactor. The best mutant obtained, R238H, produced an almost 7-fold improvement in catalysis with NADH compared with the wild-type enzyme. Surprisingly, most of this catalytic improvement appeared to be due to an improvement in the apparent kcat for the reaction rather than a large improvement in the affinity of the enzyme for NADH.  相似文献   

5.
2,5-Diketo-d-gluconic acid (2,5-DKG) reductase is an NADPH-dependent, monomeric aldo-keto reductase (AKR) which catalyzes the reduction of 2,5-DKG to 2-keto-l-gulonic acid (2-KLG) – the immediate precursor of vitamin C. The reaction catalyzed by 2,5-DKG reductase is attractive to bypass several chemical steps and produce vitamin C biocatalytically. In a screening of 22 bacterial strains, nine 2,5-DKG reductase producing bacterial strains were found. The gene of Corynebacterium glutamicum 2,5-DKG reductase was cloned and overexpressed in Escherichia coli. By batch fermentation 409 mg L?1 of 2,5-DKG reductase with a C-terminal His6-tag were obtained. The purified 2,5-DKG reductase was characterized in detail. The enzyme is most active in a pH range from 5.0 to 8.0 and its stability is high at temperatures below 35 °C. Catalytic constants for 2,5-DKG and NADPH were determined and a weak inhibition by the product 2-KLG was found. 2,5-DKG reductase activity is strongly inhibited by the common process ions Mg2+, Ca2+, SO43? and Cl?, which suggests that these should be avoided in the process. The inhibition mechanism for Cl? was elucidated. It is a competitive inhibitor with respect to NADPH and a noncompetitive inhibitior with respect to 2,5-DKG.  相似文献   

6.
K Ratnam  H Ma  T M Penning 《Biochemistry》1999,38(24):7856-7864
Fluorescence stopped-flow studies were conducted with recombinant rat liver 3 alpha-HSD, an aldo-keto reductase (AKR) that plays critical roles in steroid hormone inactivation, to characterize the binding of nicotinamide cofactor, the first step in the kinetic mechanism. Binding of NADP(H) involved two events: the fast formation of a loose complex (E.NADP(H)), followed by a conformational change in enzyme structure leading to a tightly bound complex (E.NADP(H)), which was observed as a fluorescence kinetic transient. Binding of NAD(H) was not characterized by a similar kinetic transient, implying a difference in the mode of binding of the two cofactors. Unlike previously characterized AKRs, the rates associated with the formation and decay of E.NADP(H) and E.NADP(H) were much faster than kcat for the oxidoreduction of various substrates, indicating that binding and release of cofactor is not rate-limiting overall in 3 alpha-HSD. Mutation of Arg 276, a highly conserved residue in AKRs that forms a salt bridge with the adenosine 2'-phosphate of NADP(H), resulted in large changes in Km and Kd for NADP(H) that were not observed with NAD(H). The loss in free energy associated with the increase in Kd for NADP(H) is consistent with the elimination of an electrostatic link. Importantly, this mutation abolished the kinetic transient associated with NADPH binding. Thus, anchoring of the adenosine 2'-phosphate of NADPH by Arg 276 appears to be obligatory for the fluorescence kinetic transients to be observed. The removal of Trp 86, a residue involved in fluorescence energy transfer with NAD(P)H, also abolished the kinetic transient, but mutation of Trp 227, a residue on a mobile loop associated with cofactor binding, did not. It is concluded that in 3 alpha-HSD, the time dependence of the change in Trp 86 fluorescence is due to cofactor anchoring, and thus, Trp 86 is a distal reporter of this event. Further, the loop movement that accompanies cofactor binding is spectrally silent.  相似文献   

7.
2,5-diketo-D-gluconic acid reductase (2,5-DKGR; E.C. 1.1.1.-) catalyzes the Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent stereo-specific reduction of 2, 5-diketo-D-gluconate (2,5-DKG) to 2-keto-L-gulonate (2-KLG), a precursor in the industrial production of vitamin C (L-ascorbate). Microorganisms that naturally ferment D-glucose to 2,5-DKG can be genetically modified to express the gene for 2,5-DKGR, and thus directly produce vitamin C from D-glucose. Two naturally occurring variants of DKGR (DKGR A and DKGR B) have been reported. DKGR B exhibits higher specific activity toward 2,5-DKG than DKGR A; however, DKGR A exhibits a greater selectivity for this substrate and significantly higher thermal stability. Thus, a modified form of DKGR, combining desirable properties from both enzymes, would be of substantial commercial interest. In the present study we use a molecular dynamics-based approach to understand the conformational changes in DKGR A as the active site is mutated to include two active site residue changes that occur in the B form. The results indicate that the enhanced kinetic properties of the B form are due, in part, to residue substitutions in the binding pocket. These substitutions augment interactions with the substrate or alter the alignment with respect to the putative proton donor group. Proteins 2000;39:68-75.  相似文献   

8.
The human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) is a malic enzyme isoform with dual cofactor specificity and substrate binding cooperativity. Previous kinetic studies have suggested that Lys362 in the pigeon cytosolic NADP+-dependent malic enzyme has remarkable effects on the binding of NADP+ to the enzyme and on the catalytic power of the enzyme (Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G.-G., and Chou, W. Y. (2000) Biochem. Biophys. Res. Commun. 270, 821-825). In this study, we investigate the important role of Gln362 in the transformation of cofactor specificity from NAD+ to NADP+ in human m-NAD-ME. Our kinetic data clearly indicate that the Q362K mutant shifted its cofactor preference from NAD+ to NADP+. The Km(NADP) and kcat(NADP) values for this mutant were reduced by 4-6-fold and increased by 5-10-fold, respectively, compared with those for the wild-type enzyme. Furthermore, up to a 2-fold reduction in Km(NADP)/Km(NAD) and elevation of kcat(NADP)/kcat(NAD) were observed for the Q362K enzyme. Mutation of Gln362 to Ala or Asn did not shift its cofactor preference. The Km(NADP)/Km(NAD) and kcat(NADP)/kcat(NAD) values for Q362A and Q362N were comparable with those for the wild-type enzyme. The DeltaG values for Q362A and Q362N with either NAD+ or NADP+ were positive, indicating that substitution of Gln with Ala or Asn at position 362 brings about unfavorable cofactor binding at the active site and thus significantly reduces the catalytic efficiency. Our data also indicate that the cooperative binding of malate became insignificant in human m-NAD-ME upon mutation of Gln362 to Lys because the sigmoidal phenomenon appearing in the wild-type enzyme was much less obvious that that in Q362K. Therefore, mutation of Gln362 to Lys in human m-NAD-ME alters its kinetic properties of cofactor preference, malate binding cooperativity, and allosteric regulation by fumarate. However, the other Gln362 mutants, Q362A and Q362N, have conserved malate binding cooperativity and NAD+ specificity. In this study, we provide clear evidence that the single mutation of Gln362 to Lys in human m-NAD-ME changes it to an NADP+-dependent enzyme, which is characteristic because it is non-allosteric, non-cooperative, and NADP+-specific.  相似文献   

9.
Glutamate dehydrogenase (GDH) from vertebrates is unusual among NAD(P)H-dependent dehydrogenases in that it can use either NAD(H) or NADP(H) as cofactor. In this study, we measure the rate of cofactor utilization by bovine GDH when both cofactors are present. Methods for both reaction directions were developed, and for the first time, to our knowledge, the GDH activity has been simultaneously studied in the presence of both NAD(H) and NADP(H). Our data indicate that NADP(H) has inhibitory effects on the rate of NAD(H) utilization by GDH, a characteristic of GDH not previously recognized. The response of GDH to allosteric activators in the presence of NAD(H) and NADP(H) suggests that ADP and leucine moderate much of the inhibitory effect of NADP(H) on the utilization of NAD(H). These results illustrate that simple assumptions of cofactor preference by mammalian GDH are incomplete without an appreciation of allosteric effects when both cofactors are simultaneously present.  相似文献   

10.
The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class.  相似文献   

11.
Marohnic CC  Bewley MC  Barber MJ 《Biochemistry》2003,42(38):11170-11182
Microsomal cytochrome b(5) reductase (EC 1.6.2.2) catalyzes the reduction of ferricytochrome b(5) using NADH as the physiological electron donor. Site-directed mutagenesis has been used to engineer the soluble rat cytochrome b(5) reductase diaphorase domain to utilize NADPH as the preferred electron donor. Single and double mutations at residues D239 and F251 were made in a recombinant expression system that corresponded to D239E, S and T, F251R, and Y, D239S/F251R, D239S/F251Y, and D239T/F251R, respectively. Steady-state turnover measurements indicated that D239S/F251Y was bispecific while D239T, D239S/F251R, and D239T/F251R were each NADPH-specific. Wild-type (WT) cytochrome b(5) reductase showed a 3700-fold preference for NADH whereas the mutant with the highest NADPH efficiency, D239T, showed an 11-fold preference for NADPH, a 39200-fold increase. Wild-type cytochrome b(5) reductase only formed a stable charge-transfer complex with NADH while D239T formed complexes with both NADH and NADPH. The rates of hydride ion transfer, determined by stopped-flow kinetics, were k(NADH-WT) = 130 s(-1), k(NADPH-WT) = 5 s(-1), k(NADH-D239T) = 180 s(-1), and k(NADPH-D239T) = 73 s(-1). K(s) determinations by differential spectroscopy demonstrated that D239T could bind nonreducing pyridine nucleotides with a phosphate or a hydroxyl substituent at the 2' position, whereas wild-type cytochrome b(5) reductase would only bind 2' hydroxylated molecules. Oxidation-reduction potentials (E degrees ', n = 2) for the flavin cofactor were WT = -268 mV, D239T = -272 mV, WT+NAD(+) = -190 mV, D239T+NAD(+) = -206 mV, WT+NADP(+) = -253 mV, and D239T+NADP(+) = -215 mV, which demonstrated the thermodynamic contribution of NADP(+) binding to D239T. The crystal structures of D239T and D239T in complex with NAD(+) indicated that the loss of the negative electrostatic surface that precluded 2' phosphate binding in the wild-type enzyme was primarily responsible for the observed improvement in the use of NADPH by the D239T mutant.  相似文献   

12.
Calcium 2-keto-L-gulonate (Ca-2-KLG, a key intermediate in vitamin C synthesis) is produced from calcium 2,5-diketo D-gluconate (Ca-2,5-DKG) by a variety of bacteria. A few bacterial species which efficiently convert glucose to Ca-2,5-DKG have been isolated in our laboratory. Our bacterial collection included species that possess the genes for production of Ca-2-KLG from Ca-2,5-DKG; however, the yield of the former is poor. A procedure for the preparation of spheroplasts in Ca-2,5-DKG- and Ca-2-KLG-producing bacteria was developed for the construction of recombinants (fusants), combining the genes for conversion of glucose to Ca-2-KLG efficiently by protoplast fusion. The standard procedure for spheroplast formation in Gram negative bacteria by the Tris-sucrose-EDTA-lysozyme system did not work in the organisms under investigation. The need for an alternative method was necessary. Our results show that, while the Tris-NaCl-EDTA-lysozyme system (pH 8.3) worked very well with bacterial strains of Gluconobacter oxydans (ATCC9937) and Acetobacter melanogenus (NCIM2259), the Tris-sucrose-EDTA-lysozyme system worked well for Erwinia herbicola (ATCC21998), Pseudomonas chlororaphis (NCIM2041) and Corynebacterium species (ATCC31090). However, none of these systems produced spheroplasts in Brevibacterium ketosoreductum (ATCC21914), for which a separate system is under development.  相似文献   

13.
研究了在10L发酵罐中D-葡萄糖串联发酵生产维生素C前体——2-酮基-L-古龙酸的发酵工艺条件。第一步发酵采用欧文氏菌(Erwinia sp.)的突变株SCB247,培养36小时,可将D-葡萄糖转化成中间体2,5-二酮基-D-葡萄糖酸,在发酵液中约累积180mg/ml。第二步发酵采用棒状杆菌(Corynebacterium sp.)SCB3058,可将2,5-二酮基-D-葡萄糖酸专一性地还原生成2-酮基-L-古龙酸。在细胞生长进入对数生长期后期时,加入经十二烷基硫酸钠处理的第一  相似文献   

14.
In Escherichia coli, the pentose phosphate pathway is one of the main sources of NADPH. The first enzyme of the pathway, glucose-6-phosphate dehydrogenase (G6PDH), is generally considered an exclusive NADPH producer, but a rigorous assessment of cofactor preference has yet to be reported. In this work, the specificity constants for NADP and NAD for G6PDH were determined using a pure enzyme preparation. Absence of the phosphate group on the cofactor leads to a 410-fold reduction in the performance of the enzyme. Furthermore, the contribution of the phosphate group to binding of the transition state to the active site was calculated to be 3.6 kcal·mol(-1). In order to estimate the main kinetic parameters for NAD(P) and NAD(P)H, we used the classical initial-rates approach, together with an analysis of reaction time courses. To achieve this, we developed a new analytical solution to the integrated Michaelis-Menten equation by including the effect of competitive product inhibition using the ω-function. With reference to relevant kinetic parameters and intracellular metabolite concentrations reported by others, we modeled the sensitivity of reduced cofactor production by G6PDH as a function of the redox ratios of NAD/NADH (rR(NAD)) and NADP/NADPH (rR(NADP)). Our analysis shows that NADPH production sharply increases within the range of thermodynamically feasible values of rR(NADP), but NADH production remains low within the range feasible for rR(NAD). Nevertheless, we show that certain combinations of rR(NADP) and rR(NAD) sustain greater levels of NADH production over NADPH.  相似文献   

15.
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to provide a basis for future optimization. Kinetic isotope effect studies with PTDH-E175A/A176R showed that the hydride transfer step is (partially) rate determining with both NAD and NADP giving (D)V values of 2.2 and 1.7, respectively, and (D)V/K(m,phosphite) values of 1.9 and 1.7, respectively. To better comprehend the relaxed cofactor specificity, the cofactor dissociation constants were determined utilizing tryptophan intrinsic fluorescence quenching. The dissociation constants of NAD and NADP with PTDH-E175A/A176R were 53 and 1.9 microm, respectively, while those of the products NADH and NADPH were 17.4 and 1.22 microm, respectively. Using sulfite as a substrate mimic, the binding order was established, with the cofactor binding first and sulfite binding second. The low dissociation constant for the cofactor product NADPH combined with the reduced values for (D)V and k(cat) implies that product release may become partially rate determining. However, product inhibition does not prevent efficient in situ NADPH regeneration by PTDH-E175A/A176R in a model system in which xylose was converted into xylitol by NADP-dependent xylose reductase. The in situ regeneration proceeded at a rate approximately fourfold faster with PTDH-E175A/A176R than with either WT PTDH or a NADP-specific Pseudomonas sp.101 formate dehydrogenase mutant with a total turnover number for NADPH of 2500.  相似文献   

16.
Using the purified NADP(H)-binding domain of proton-translocating Escherichia coli transhydrogenase (ecIII) overexpressed in (15)N- and (2)H-labeled medium, together with the purified NAD(H)-binding domain from E. coli (ecI), the interface between ecIII and ecI, the NADP(H)-binding site and the influence on the interface by NAD(P)(H) was investigated in solution by NMR chemical shift mapping. Mapping of the NADP(H)-binding site showed that the NADP(H) substrate is bound to ecIII in an extended conformation at the C-terminal end of the parallel beta-sheet. The distribution of chemical shift perturbations in the NADP(H)-binding site, and the nature of the interaction between ecI and ecIII, indicated that the nicotinamide moiety of NADP(H) is located near the loop comprising residues P346-G353, in agreement with the recently determined crystal structures of bovine [Prasad, G. S., et al. (1999) Nat. Struct. Biol. 6, 1126-1131] and human heart [White, A. W., et al. (2000) Structure 8, 1-12] transhydrogenases. Further chemical shift perturbation analysis also identified regions comprising residues G389-I406 and G430-V434 at the C-terminal end of ecIII's beta-sheet as part of the ecI-ecIII interface, which were regulated by the redox state of the NAD(P)(H) substrates. To investigate the role of these loop regions in the interaction with domain I, the single cysteine mutants T393C, R425C, G430C, and A432C were generated in ecIII and the transhydrogenase activities of the resulting mutant proteins characterized using the NAD(H)-binding domain I from Rhodospirillum rubrum (rrI). All mutants except R425C showed altered NADP(H) binding and domain interaction properties. In contrast, the R425C mutant showed almost exclusively changes in the NADP(H)-binding properties, without changing the affinity for rrI. Finally, by combining the above conclusions with information obtained by a further characterization of previously constructed mutants, the implications of the findings were considered in a mechanistic context.  相似文献   

17.
The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn(2+) ion, one or two Mg(2+) ions, and a tightly bound cofactor NAD(H) per subunit. The Mg(2+) ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.  相似文献   

18.
辅酶NAD(H)相比NADP(H)有稳定性好、价格低廉及更广的辅酶循环方法等优势,因此在实际应用中常需将NADP(H)依赖型的脱氢酶改造成为NAD(H)依赖型的。来源于嗜热共生杆菌Symbiobacterium thermophilum的NADP(H)依赖型内消旋-2,6-二氨基庚二酸脱氢酶(meso-2,6-diaminopimelate dehydrogenase,St DAPDH)及其突变体酶是催化还原氨化合成D-氨基酸的优良催化剂,本研究试图改变其辅酶偏好性,增强其应用优势。对其晶体结构分析可知,氨基酸残基Y76距离腺嘌呤较近,R35及R36和辅酶上磷酸基团有直接相互作用。依氨基酸侧链基团性质对Y76进行了定点突变,发现不同突变子对两种辅酶的偏好性都发生了变化;对与磷酸基团直接作用的R35、R36进行的双突变R35S/R36V,导致酶对NADP+的催化活力降低;将R35S/R36V和部分Y76突变进行了组合,发现三突变组合以NAD+为辅酶时的活力均大于以NADP+为辅酶的活力,实现了辅酶偏好性转变。这些研究工作为进一步实现St DAPDH的辅酶偏好性完全转变提供依据。  相似文献   

19.
beta-Ketoacyl-acyl carrier protein reductase (FabG) is a key component in the type II fatty acid synthase system. The structures of Escherichia coli FabG and the FabG[Y151F] mutant in binary complexes with NADP(H) reveal that mechanistically important conformational changes accompany cofactor binding. The active site Ser-Tyr-Lys triad is repositioned into a catalytically competent constellation, and a hydrogen bonded network consisting of ribose hydroxyls, the Ser-Tyr-Lys triad, and four water molecules creates a proton wire to replenish the tyrosine proton donated during catalysis. Also, a disordered loop in FabG forms a substructure in the complex that shapes the entrance to the active site. A key observation is that the nicotinamide portion of the cofactor is disordered in the FabG[Y151F].NADP(H) complex, and Tyr151 appears to be necessary for high-affinity cofactor binding. Biochemical data confirm that FabG[Y151F] is defective in NADPH binding. Finally, structural changes consistent with the observed negative cooperativity of FabG are described.  相似文献   

20.
Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号