首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under anoxic conditions Pseudomonas sp. strain JLR11 can use 2,4, 6-trinitrotoluene (TNT) as the sole N source, releasing nitrite from the aromatic ring and subsequently reducing it to ammonium and incorporating it into C skeletons. This study shows that TNT can also be used as a terminal electron acceptor in respiratory chains under anoxic conditions by Pseudomonas sp. strain JLR11. TNT-dependent proton translocation coupled to the reduction of TNT to aminonitrotoluenes has been observed in TNT-grown cells. This extrusion did not occur in nitrate-grown cells or in anaerobic TNT-grown cells treated with cyanide, a respiratory chain inhibitor. We have shown that in a membrane fraction prepared from Pseudomonas sp. strain JLR11 grown on TNT under anaerobic conditions, the synthesis of ATP was coupled to the oxidation of molecular hydrogen and to the reduction of TNT. This phosphorylation was uncoupled by gramicidin. Respiration by Pseudomonas sp. strain JLR11 is potentially useful for the biotreatment of TNT in polluted waters and soils, particularly in phytorhizoremediation, in which bacterial cells are transported to the deepest root zones, which are poor in oxygen.  相似文献   

2.
The electron transport chain of the gram-negative bacterium Pseudomonas aeruginosa, grown aerobically, contained a number of primary dehydrogenases and respiratory components (soluble flavin, bound flavin, coenzyme Q9, heme b, heme c, and cytochrome o) in membrane particles of the organism. Cytochrome o, about 50% of the b-type cytochrome, seemed to function as a terminal oxidase in the respiratory chain. The electron transport chain of P. aeruginosa grown aerobically was suggested to be lined up in order of primary dehydrogenase, b, c1, c, o, and oxygen.  相似文献   

3.
Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Pseudomonas aeruginosa is an obligate respirer which can utilize nitrate as a terminal electron acceptor under anaerobic conditions (denitrification). Immediate, transient regulation of nitrate respiration is mediated by oxygen through the inhibition of nitrate uptake. In order to gain an understanding of the bioenergetics of nitrate transport and its regulation by oxygen, the effects of various metabolic inhibitors on the uptake process and on oxygen regulation were investigated. Nitrate uptake was stimulated by the protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol, indicating that nitrate uptake is not strictly energized by, but may be affected by the proton motive force. Oxygen regulation of nitrate uptake might in part be through redox-sensitive thiol groups since N-ethylmaleimide at high concentrations decreased the rate of nitrate transport. Cells grown with tungstate (deficient in nitrate reductase activity) and azide-treated cells transported nitrate at significantly lower rates than untreated cells, indicating that physiological rates of nitrate transport are dependent on nitrate reduction. Furthermore, tungstate grown cells transported nitrate only in the presence of nitrite, lending support to the nitrate/nitrite antiport model for transport. Oxygen regulation of nitrate transport was relieved (10% that of typical anaerobic rates) by the cytochrome oxygen reductase inhibitors carbon monoxide and cyanide.  相似文献   

4.
Oxygen Toxicity and the Superoxide Dismutase   总被引:43,自引:18,他引:25  
Oxygen caused an increase in the amount of superoxide dismutase in Escherichia coli B but not in Bacillus subtilis. E. coli B cells, induced by growth under 100% O(2), were much more resistant to the lethal effects of 20 atm of O(2) than were cells which contained the low uninduced level of this enzyme. In contrast, B. subtilis, which could not respond to O(2) by increasing its content of superoxide dismutase, remained equally sensitive to hyperbaric O(2) whether grown under 100% O(2) or areobically. The catalase in these organisms exhibited a reciprocal response to oxygen. Thus, the catalase of E. coli B was not induced by O(2), whereas that of B. subtilis was so induced. These results are consistent with the view that superoxide dismutase is an important component of the defenses of these organisms against the toxicity of oxygen, whereas their catalases are of secondary importance in this respect. The ability of streptonigrin to generate O(2) (-), by a cycle of reduction followed by spontaneous reoxidation, has been verified in vitro. It is further observed that E. coli B which contain the high induced level of superoxide dismutase were more resistant to the lethality of this antibiotic, in the presence of oxygen, than were E. coli B which contained the low uninduced level of this enzyme. This difference between induced and uninduced cells was eliminated by the removal of O(2). These results are consistent with the proposal that the enhanced lethality of streptonigrin under aerobic conditions may relate to its in vivo generation of O(2) (-) by a cycle of reduction and spontaneous reoxidation. In toto, these observations lend support to the hypothesis that O(2) (-) is an important agent of oxygen toxicity and that superoxide dismutase functions to blunt the threat posed by this reactive radical.  相似文献   

5.
Transport of Glycerol by Pseudomonas aeruginosa   总被引:10,自引:9,他引:1       下载免费PDF全文
In Pseudomonas aeruginosa, the transport of glycerol was shown to be genetically controlled and to be dependent on induction by glycerol. Accumulation of (14)C-glycerol was almost completely absent in uninduced cells and in a transport-negative mutant. Kinetic studies with induced cells suggested that glycerol may be transported by two systems with different affinities for glycerol. Osmotically shocked cells did not transport glycerol, and the supernatant fluid from shocked cells contained glycerol-binding activity demonstrable by equilibrium dialysis. The binding protein was not glycerol kinase. Binding activity was absent in shock fluids from the transport-negative mutant and from uninduced cells. The glycerol-binding protein was partially purified by precipitation with ammonium sulfate. Mild heat treatment completely eliminated the binding activity of shock fluid and of the partially purified protein. Sodium azide and N-ethylmaleimide inhibited both transport by whole cells and binding of glycerol by shock fluid. It is concluded that transport of glycerol by P. aeruginosa involves a binding protein responsible for recognition of glycerol and may occur by facilitated diffusion or active transport. A requirement for energy has not been demonstrated.  相似文献   

6.
The kinetics and mechanism of Fe(III) reduction to Fe(II) were studied in pure batch cultures of Pseudomonas sp. 200. The rate of iron reduction has been mechanistically related to aqueous phase iron speciation. In the absence of microbial activity the iron reduction rate was negligible. Initial rates of microbial iron reduction were accelerated more than 20-fold by the addition of equimolar quantities of nitrilotriacetic acid (NTA) to media initially containing 1.86 x 10(-3)M total Fe(III). Numerical techniques were utilized to quantify relationships between the observed rate of Fe(II) production and the calculated (equilibrium) aqueous phase speciation. These results indicate that soluble ferric iron species are not equivalent in terms of their susceptibility to bacterial (dissimilative) iron reduction. The concentration of Fe(NTA)(OH)(2) (2-) correlated strongly with observed iron reduction rates. Ferrous iron species appeared to inhibit the reduction process.  相似文献   

7.
Baginsky, Marietta L. (University of California, San Francisco Medical Center, San Francisco), and Victor W. Rodwell. Metabolism of pipecolic acid in a Pseudomonas species. IV. Electron transport particle of Pseudomonas putida. J. Bacteriol. 92:424-432. 1966.-Enzymes of Pseudomonas putida P2 catalyzing oxidation of pipecolate to Delta(1)-piperideine-6-carboxylate are located in a subcellular fraction sedimenting at 105,000 x g. Since this fraction resembles the mammalian electron transport particle in both chemical composition and enzymatic activities, it was termed Pseudomonas P2 electron transport particle (P2-ETP). P2-ETP contains flavin adenine dinucleotide, flavin mononucleotide, iron, copper, and both b- and c-type cytochromes. The reduced type b cytochrome has absorption maxima at 558 to 559, 530, and 427 mmu. Its oxidized pyridine hemochromogen has an absorption maximum at 406 mmu, with a shoulder at 564 mmu. On dithionite reduction, absorption bands with maxima at 556, 522, and 418 mmu are obtained. The reduced type c cytochrome has absorption maxima at 552, 520, and 422 mmu; its reduced pyridine hemochromogen has maxima at 551, 516 to 519, and 418 mmu. No type a cytochrome was detected. P2-ETP catalyzes oxidation of pipecolate and of reduced nicotinamide adenine dinucleotide (NADH(2)) by oxygen. It can also oxidize these compounds, as well as succinate and reduced nicotinamide adenine dinucleotide phosphate, with 2,6-dichlorophenol-indophenol as electron acceptor. Mammalian cytochrome c can be used as an alternate artificial electron acceptor for the oxidation of pipecolate and succinate, but not for oxidation of NADH(2).  相似文献   

8.
The response of MnO2 reduction by uninduced and induced whole cells and cell extracts of Bacillus 29 to several electron transport inhibitors was compared. MnO2 reduction with glucose by uninduced whole cells and cell extracts was strongly inhibited at 0.1 mM dicumarol, 100 mM azide, and 8 mM cyanide but not by atebrine or carbon monoxide, suggesting the involvement of a vitamin K--type quinone and a metalloenzyme in the electron transport chain. MnO2 reduction with ferrocyanide by uninduced cell extracts was inhibited by 5 mM cyanide and 100 mM azide but not by atebrine, dicumarol, or carbon monoxide, suggesting that the metalloenzyme was associated with the terminal oxidase activity. MnO2 reduction with glucose by induced whole cells and cell extracts, was inhibited by 1 mM atebrine, 0.1 mM dicumarol, and 10 mM cyanide but not by antimycin A, 2n-nonyl-4-hydroxyguinoline-N-oxide) (NOQNO), 4,4,4-trifluoro-1-(2-thienyl),1,3-butanedione, or carbon monoxide. Induced cell extract was also inhibited by 100 mM azide, but stimulated by 1 mM and 10 mM azide. Induced whole cells were stimulated by 10 mM and 100 mM azide. These results suggested that electron transport from glucose to MnO2 in induced cells involved such components as flavoprotein, a vitamin K-type quinone, and metalloenzyme. The stimulatory effect of azide on induced cells was explained on the basis of a branching in the terminal part of the electron transport chain, one branch involving a metalloenzyme for the reduction of MnO2 and the other involving a metalloenzyme for the reduction of oxygen. The latter was assumed to be the more azide sensitive. Spectral studies showed the presence of a-, b-, and c-type cytochromes in membrane but not in soluble fractions. Of these cytochromes, only the c type may be involved in electron transport of MnO2, owing to the lack of inhibition by antimycin A or 2n-nonyl-4-hydroxyquinoline-N-oxide. The terminal MnO2 reductase appears to be loosely attached to the cell membrane of Bacillus 29 because of cell fractionation it is found associated with both particulate and soluble fractions. Electron photomicrographs of bacilli attached to synthetic Fe-Mn oxide revealed an intimate contact of the cell walls with the oxide particles.  相似文献   

9.
The effect of low concentrations of cyanide on dissimilatory perchlorate and chlorate reduction and aerobic respiration was examined using pure cultures of Azospira sp. KJ. Cyanide at a concentration of 38 microM inhibited cell growth on perchlorate, chlorate and molecular oxygen, but it did not inhibit the activity of chlorite dismutase. When oxygen accumulation was prevented by adding an oxygen scavenger (Oxyrase or L-cysteine), however, cells completely reduced perchlorate in the presence of cyanide. It was concluded that the inhibition of dissimilative perchlorate reduction by cyanide at this concentration was a consequence of oxygen accumulation, not inhibition of the enzymes used for perchlorate reduction. This finding on the effect of cyanide on respiratory enzymes provides a new method to control and study respiratory enzymes used for perchlorate reduction.  相似文献   

10.
The response of MnO2 reduction by uninduced and induced whole cells and cell extracts of Bacillus 29 to several electron transport inhibitors was compared. MnO2 reduction with glucose by uninduced whole cells and cell extracts was strongly inhibited at 0.1 mM dicumarol, 100 mM azide, and 8 mM cyanide but not by atebrine or carbon monoxide, suggesting the involvement of a vitamin K--type quinone and a metalloenzyme in the electron transport chain. MnO2 reduction with ferrocyanide by uninduced cell extracts was inhibited by 5 mM cyanide and 100 mM azide but not by atebrine, dicumarol, or carbon monoxide, suggesting that the metalloenzyme was associated with the terminal oxidase activity. MnO2 reduction with glucose by induced whole cells and cell extracts, was inhibited by 1 mM atebrine, 0.1 mM dicumarol, and 10 mM cyanide but not by antimycin A, 2n-nonyl-4-hydroxyguinoline-N-oxide) (NOQNO), 4,4,4-trifluoro-1-(2-thienyl),1,3-butanedione, or carbon monoxide. Induced cell extract was also inhibited by 100 mM azide, but stimulated by 1 mM and 10 mM azide. Induced whole cells were stimulated by 10 mM and 100 mM azide. These results suggested that electron transport from glucose to MnO2 in induced cells involved such components as flavoprotein, a vitamin K-type quinone, and metalloenzyme. The stimulatory effect of azide on induced cells was explained on the basis of a branching in the terminal part of the electron transport chain, one branch involving a metalloenzyme for the reduction of MnO2 and the other involving a metalloenzyme for the reduction of oxygen. The latter was assumed to be the more azide sensitive. Spectral studies showed the presence of a-, b-, and c-type cytochromes in membrane but not in soluble fractions. Of these cytochromes, only the c type may be involved in electron transport of MnO2, owing to the lack of inhibition by antimycin A or 2n-nonyl-4-hydroxyquinoline-N-oxide. The terminal MnO2 reductase appears to be loosely attached to the cell membrane of Bacillus 29 because of cell fractionation it is found associated with both particulate and soluble fractions. Electron photomicrographs of bacilli attached to synthetic Fe-Mn oxide revealed an intimate contact of the cell walls with the oxide particles.  相似文献   

11.
Pyochelin is an iron-binding compound produced by Pseudomonas aeruginosa and demonstrates siderophore activity by its involvement in iron transport. During the transport process, an energy-independent association of [55Fe]ferripyochelin with bacteria occurred within the initial 30 s of reaction, followed by an energy-dependent accumulation of iron. The energy-independent association with iron appeared to be at the surface of the bacteria because the iron could be washed from the cells with thioglycolate, whereas accumulated iron was not washed from the bacteria. Energy-independent association of iron with bacteria and energy-dependent accumulation of iron in the presence of ferripyochelin varied concomitantly in cells grown under various conditions, but pyochelin synthesis appeared to be controlled separately. 55Fe complexed with citrate was also taken up by P. aeruginosa with a lower level of initial cell association. Bacterial mechanisms for iron uptake from ferric citrate were present in cells grown in a variety of media and were in lowest levels in cells grown in citrate. The synthesis of bacterial components for iron uptake from ferric citrate and from ferripyochelin was inhibited by high concentrations of iron supplied in growth media.  相似文献   

12.
Growth, acetylene reduction, and respiration rate were studied in batch and continuous cultures of Arthrobacter fluorescents at different oxygen partial pressures. The optimum pO2 values for growth and acetylene reduction were 0.05 and 0.025 atm, respectively, but microorganisms can tolerate higher pO2 values. The growth of cultures provided with combined nitrogen was dependent on oxygen availability, and strict anaerobic conditions did not support growth. Acetylene reduction of a population grown in continuous culture and adapted to low pO2 (0.02 atm) was much more sensitive to oxygenation than that of a population adapted to high pO2 (0.4 atm). Their maximum nitrogenase activity, at their optimal pO2 values, were quite different. The respiratory activity of nitrogen-fixing cultures increased with increasing oxygen tensions until a pO2 of 0.2 atm. At higher pO2 values, the respiration rate began to decrease.  相似文献   

13.
In vivo (31)P-NMR was used to investigate the basis for the inhibition of denitrification by nitrite accumulated endogenously by Pseudomonas fluorescens ATCC 17822 (biotype II) at pH 7.0. Cells were immobilized in kappa-carrageenan to obtain high cell concentrations in the NMR tube. Acetate and nitrate in two concentration ratios were supplied as electron donor and acceptor, respectively, to achieve different levels of nitrite accumulation. During denitrification, cells were able to maintain a pH gradient of approximately 0.4 to 0.5 units, but when nitrite accumulation reached values approximating 27 mM the transmembrane DeltapH collapsed sharply. Nitrite stimulated the reduction rate of nitrate; furthermore, at nitrite concentrations below 1 mM, activation of oxygen respiratory rates was observed in cells grown under aerobic conditions. The results provide evidence for nitrite acting as a protonophore (an uncoupler that increases the proton permeability of membranes by a shuttling mechanism). (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The maximum specific growth rates of Pseudomonas fragi, Bacillus cereus and Streptococcus cremoris were studied over a wide range of carbon dioxide concentrations. The growth rate compared with a control was reduced to 50% in Ps. fragi at 0–5 atm CO2, in B. cereus at 1—3 atm and in Strep, cremoris at 8–6 atm. B. cereus and Strep, cremoris were completely inhibited at 3 and 11 atm CO2, respectively. The growth rate of the aerobic Ps. fragi at 0–99 atm CO2 (0–01 atm oxygen) was reduced to about 20% of that in air. The growth rate of Ps. fragi was decreased at oxygen concentrations lower than 0–01 atm.
When Ps. fragi was grown at oxygen limitation (0.0025 atm oxygen) and exposed to 0.99 atm CO2, the inhibiting effect of the CO2 was added to that of the oxygen limitation. No indications of a synergistic effect between CO2 inhibition and oxygen limitation were noted.
B. cereus and Strep, cremoris were tested under anaerobic conditions.  相似文献   

15.
It was experimentally demonstrated that two strains of Arthrobacter 37, one growing at 25 C and the other at 5 C, could catalyze MnII oxidation at hydrostatic pressures well in excess of the pressure encountered by the parent culture in its original habitat in the ocean (80 atm). The strain grown at 5 C showed an increase in temperature optimum for manganese oxidation with increase in pressure. It was like-wise experimentally shown that induced Bacillus 29 without added ferricyanide and uninduced Bacillus 29 with added ferricyanide could catalyze MnO2 reduction at hydrostatic pressures in excess of the pressure encountered by this organism in its original habitat (187 atm). The uninduced Bacillus 29, in the presence of ferricyanide, was active over a wider range of pressures (1 to 1,000 atm) than the induced Bacillus 29 in the absence of ferricyanide (1 to 467 atm). At corresponding pressures, the uninduced culture was also considerably more active than the induced culture. Special techniques were developed for measuring MnII-oxidizing and MnO2-reducing activity under pressure.  相似文献   

16.
Denitrification is a well-studied respiratory system that is also important in the biogeochemical nitrogen cycle. Environmental signals such as oxygen and N-oxides have been demonstrated to regulate denitrification, though how denitrification is regulated in a bacterial community remains obscure. Pseudomonas aeruginosa is a ubiquitous bacterium that controls numerous genes through cell-to-cell signals. The bacterium possesses at least two N-acyl-L-homoserine lactone (AHL) signals. In our previous study, these quorum-sensing signals controlled denitrification in P. aeruginosa. In addition to the AHL signals, a third cell-to-cell communication signal, 2-heptyl-3-hydroxy-4-quinolone, referred to as the Pseudomonas quinolone signal (PQS), has been characterized. In this study, we examined the effect of PQS on denitrification to obtain more insight into the respiratory regulation in a bacterial community. Denitrification in P. aeruginosa was repressed by PQS, which was partially mediated by PqsR and PqsE. Measuring the denitrifying enzyme activities indicated that nitrite reductase activity was increased by PQS, whereas PQS inhibited nitric oxide reductase and the nitrate-respiratory chain activities. This is the first report to demonstrate that PQS influences enzyme activities, suggesting this effect is not specific to P. aeruginosa. Furthermore, when iron was supplied to the PQS-added medium, denitrifying activity was almost restored, indicating that the iron chelating property of PQS affected denitrification. Thus, our data indicate that PQS regulates denitrification primarily through iron chelation. The PQS effect on denitrification was relevant in a condition where oxygen was limited and denitrification was induced, suggesting its role in controlling denitrification where oxygen is present.  相似文献   

17.
Enterobactin-mediated iron transport in Pseudomonas aeruginosa.   总被引:21,自引:9,他引:12       下载免费PDF全文
K Poole  L Young    S Neshat 《Journal of bacteriology》1990,172(12):6991-6996
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction.  相似文献   

18.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

19.
It has previously been shown that myo-inositol hexakisphosphate (myo-InsP6) mediates iron transport into Pseudomonas aeruginosa and overcomes iron-dependent growth inhibition. In this study, the iron transport properties of myo-inositol trisphosphate and tetrakisphosphate regio-isomers were studied. Pseudomonas aeruginosa accumulated iron (III) at similar rates whether complexed with myo-Ins(1,2,3)P3 or myo-InsP6. Iron accumulation from other compounds, notably D/L myo-Ins(1,2,4,5)P4 and another inositol trisphosphate regio-isomer, D-myo-Ins(1,4,5)P3, was dramatically increased. Iron transport profiles from myo-InsP6 into mutants lacking the outer membrane porins oprF, oprD and oprP were similar to the wild-type, indicating that these porins are not involved in the transport process. The rates of reduction of iron (III) to iron (II) complexed to any of the compounds by a Ps. aeruginosa cell lysate were similar, suggesting that a reductive mechanism is not the rate-determining step.  相似文献   

20.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号