首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efforts were made to evaluate the decomposition potentials of traditional monoculture and some novel polyculture vermireactors. Three earthworm species, i.e. Eisenia fetida (E. f.), Perionyx excavatus (P. ex.) and Lampito mauritii (L. m.), representing two different ecological categories: epigeic (E. fetida and P. excavatus) and anecic (L. mauritii), were used to design seven different vermireactors, i.e. Mono-(E. f.), Mono-(P. ex.), Mono-(L. m.), Poly-(E. f. + P. ex.), Poly-(P. ex. + L. m.), Poly-(E. f. + L. m.) and Poly-(E. f. + P. ex. + L. m.). The microbial load of vermireactors was evaluated through measuring dehydrogenises activities (DH-ase) and microbial biomass-N, while mineralization rate was measured in respect to changed level of some important nutrients in vermicomposted substrate. The vermicomposting caused decrease in pH (67.0–15.0%), organic C (46.1–28.4%) and C:N ratio (72.2–57.1%) and increase in total N (137.7–67.8%) as well as available P (107.9–16.9%) contents, at the end. The carbon and nitrogen mineralization rate showed the order: Poly-(E. f. + P. ex. + L. m.) > Poly-(E. f. + L. m.) > Poly-(P. ex. + L. m.) > Poly-(E. f. + P. ex.) > Mono-(E. f.) > Mono-(P. ex.) > Mono-(L. m.) for this study. The Poly-(E. f. + P. ex. + L. m.) vermireactor showed the maximum level of DH-ase activity 1926 ± 245 μg g−1 substrate 24 h as well as microbial biomass-N 3059.1 ± 242.3 mg N g−1 substrate, during experimentation. This study clearly suggests that burrowing earthworms in vermireactor not only promote the microbial colonization, but at the same time also accelerate the mineralization rate in decomposing waste. The polyculture vermicomposting, using burrowing earthworms with epigeics, could be more efficient than traditional monoculture vermireactors to decompose organic waste resources.  相似文献   

2.
Most studies investigating the effects of earthworms on microorganisms have focused on the changes before and after vermicomposting rather than those that occur throughout the process. In the present study, we designed continuous feeding reactors in which new layers of pig slurry (1.5 and 3 kg) were added sequentially to form an age gradient inside the reactors in order to evaluate the impact of the earthworm species Eisenia fetida on microbial community structure and function. The activity of earthworms greatly reduced the bacterial and fungal biomass and microbial diversity relative to the control values. However, the pronounced presence of earthworms in the younger layers stimulated microbial activity and as such increased carbon mineralization probably due to the fact that the microorganisms may have been less resource-limited as a result of earthworm activity, as indicated by the ratio of monounsaturated to saturated PLFAs.  相似文献   

3.
Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group’s population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).  相似文献   

4.
Efforts have been made to evaluate the microbial and decomposition efficiency of three different vermireactors: (i) polyculture (introducing equal numbers of anecic and epigeic earthworms), (ii) monoculture (anecic) and (iii) monoculture (epigeic), designed by using earthworms of two different ecological categories i.e. anecic (Lampito mauritii Kinberg) and epigeic (Eisenia fetida (Savigny)). The microbial load of vermireactors was measured through substrate-induced respiration rate (SIR), microbial biomass N content and rate of dehydrogenase activity, while mineralization rate was evaluated measuring some chemical parameters of the substrate. Earthworms caused a decrease (as compared to initial value) in pH (41.9–80.7%), organic C (10.3–14.2%) and C:N ratio (41.9–80.7%) and an increase in total N (29.1–58.8%), NH4-N (876.1–1485.7%), NO3-N (29081.8–56792.6%), available P (16–19.4%) and exchangeable K (9.8–13.5%) contents of the substrate. The mineralization efficiency of the reactors was in the order: polyculture (epigeic + anecic) > monoculture (anecic) > monoculture (epigeic). The polyculture reactor showed the maximum rate of SIR (2.91 ± 0.2 mg COg−1 substrate), microbial biomass N (3108.1 ± 289.2 mg N g−1 substrate), and dehydrogenase activity (2453.3 ± 379.8 μg g−1 substrate 24 h), while in the monoculture (epigeic) the lowest values of the same parameters were observed. It is concluded that the observed differences among reactors were due to different feeding behaviour and niche structures of epigeic and anecic earthworms. Data suggests that burrowing earthworms in waste-decomposing-system not only enhance the microbial efficiencies, but at the same time also accelerate the organic matter mineralization in a vermireactor. However, most of the previous studies were based on monoculture reactors (using epigeic earthworms) which have been recommended for waste decomposition operations, but this study revealed that polyculture vermicomposting (adding of burrowing worms with epigeic earthworms in vermicomposting system) might be beneficial for rapid decomposition of organic wastes.  相似文献   

5.
Surindra Suthar   《Bioresource technology》2009,100(24):6422-6427
The aim of this study was to assess the potential of Allolobophora parva Eisen as a candidate for vermicomposting practices. Five organic waste mixtures: cow dung (CD), biogas plant slurry (BGS), cow dung + vegetable waste (CD + VW), BGS + VW and VW + Soil were vermicomposted using A. parva. Vermicomposting showed a decrease in pH, organic C and C:N ratio, but increase total N, available P and exchangeable K at the end. C:N ratio of end material (vermicompost) was within the agronomic acceptable limit (<20). The high level of NPK in worm-processed material indicates the candidature of this species for waste management operations. The earthworm also showed an excellent growth in different wastes. Results thus indicate that A. parva appeared a potential tool for conversion of organic wastes into value added products for sustainable land restoration practices.  相似文献   

6.
Vermistabilization of primary sewage sludge   总被引:4,自引:0,他引:4  
Hait S  Tare V 《Bioresource technology》2011,102(3):2812-2820
An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20 °C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m−2 (optimum: 0.5 kg m−2) and for vermicomposting is 2.0-4.0 kg m−2 (optimum: 3.0 kg m−2), respectively.  相似文献   

7.
蚯蚓对废纸屑再利用及养分贫瘠土壤综合质量的影响   总被引:1,自引:0,他引:1  
办公废纸屑作为常见有机废弃物,由于体积小且转化为再生纸成本高,因而再利用很难。但其含有大量有机碳(特别是纤维素)可能有助于退化土壤修复。蚯蚓对土壤有机质分解和其他土壤功能有重要影响,办公废纸屑和蚯蚓共同作用如何影响养分贫瘠土壤质量至今未知。研究以赤子爱胜蚓为接种蚯蚓,将办公废纸屑添加到养分贫瘠土壤中,分别设置纯土壤培养为对照组(S)、单独添加废纸屑(SP)、单独接种赤子爱胜蚓(SE)和添加废纸屑并接种赤子爱胜蚓的处理(SPE),比较培养90 d后各处理理化指标(pH、有机碳、全氮、全磷、全钾、碱解氮、速效磷、速效钾、交换性阳离子钾、钠、钙、镁等)、微生物磷脂脂肪酸(PLFAs)总含量和微生物结构的差异,在此基础上综合评价土壤质量,阐明废纸屑和赤子爱胜蚓在养分贫瘠土壤改良修复中的作用。结果显示:SPE处理较SP处理显著提高废纸屑的分解率89.48%。与对照相比,SP处理能够显著提高土壤pH值2.94个单位,SPE处理能够使其维持在中性水平;前者显著提高土壤有机碳(SOC)125.76%,交换性钠钙镁(NaEx、CaEx、MgEx  相似文献   

8.
A xylanolytic bacterium, Cellulosimicrobium sp. HY-13, was isolated from the digestive tract of an earthworm, Eisenia fetida. The purified cellulase-free endo-β-1,4-xylanase (XylK) produced by strain HY-13 was found to contain an N-terminal amino acid sequence of APSTLEAAAE and to have a relative molecular mass of 36 kDa. It was most active at pH 6.0 and 55 °C and had Vmax and Km values toward oat spelt xylan of 4067 IU/mg and 2.78 mg/ml, respectively. XylK primarily degraded xylan to a series of xylooligosaccharides composed of xylobiose to xylotetraose, but it could not further hydrolyze xylobiose to xylose. The results of the present study suggest that the relatively highly active XylK lacking exo-xylanolytic activity is a promising candidate for the efficient production of non-digestible xylooligosaccharides that may have beneficial effects to gastrointestinal health via promotion of the growth of probiotics.  相似文献   

9.
The metabolic response of the earthworm Eisenia fetida to two pesticides, dichlorodiphenyltrichloroethane (DDT) and endosulfan, was characterized in contact tests using proton nuclear magnetic resonance (1H NMR) and principal component analysis (PCA). PCA loading plots suggested that maltose, leucine and alanine were important metabolites contributing to the differences in dosed and control earthworms for both compounds at doses of 0.5, 1.0 and 2.0 μg/cm2. Gas chromatography/mass spectrometry (GC/MS) was used to quantify the metabolites identified in E. fetida and determine if the changes in maltose, leucine and alanine following exposure to DDT and endosulfan (at 0.5 and 1.0 μg/cm2) were reproducible and greater than the natural variability. Quantification by GC/MS suggested that maltose was not a reliable biomarker since it both increased and decreased in earthworms exposed to DDT and increased by just 3% with exposure to endosulfan. Leucine was not stable with the GC/MS derivitization method used in this study and could not be confirmed as a reliable biomarker. However, alanine consistently increased for both DDT and endosulfan exposed E. fetida. Alanine showed considerable variability in control earthworms (±41.6%), yet the variability in alanine to glycine ratios was just ±10.5%. Increases in the alanine to glycine ratio were statistically significant at the P = 0.05 level for the 1.0 μg/cm2 DDT dose and both the 0.5 and 1.0 μg/cm2 endosulfan doses, suggesting that deviations from the normal homeostatic ratio of 1.5 for alanine to glycine is a potential biomarker of DDT and endosulfan exposure warranting further study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Environmental Metabolomics Special Issue of Metabolomics.  相似文献   

10.
Pineapple wastes, an abundant organic waste in Accra, Ghana, were vermicomposted using native earthworms (Eudrilus eugeniae Kinberg) collected from the banks of streams and around bath houses of this city. Triplicate pilot-scale vermidigesters containing about 90 earthworms and three other control boxes with no earthworms were fed pineapple pulp or peels, and the loss of wet mass was monitored over 20 weeks. In a second experiment, a 1:1 mixture of pineapple peels and pulp (w/w) was fed to triplicate pilot-scale vermicomposters and control boxes during a 20 week period. One month after feeding ended, the vermicompost and composted (control) waste was air dried and analyzed. During the first experiment, the vermicomposted pineapple pulp and peels lost 99% and 87% of their wet mass, respectively, indicating the potential for vermicomposting. Fresh pineapple waste exhibited an initial pH of 4.4, but after 24 weeks, the vermicompost and compost had acquired a neutral to alkaline pH of 7.2–9.2. The vermicompost contained as much as 0.4% total N, 0.4% total P and 0.9% total K, and had a C:N ratio of 9–10. A reduction of 31–70% in the Escherichia coli plus Salmonella loads and 78–88% in the Aspergillus load was observed during vermicomposting. The rapid breakdown of pineapple wastes by E. eugeniae demonstrated the viability of vermicomposting as a simple and low cost technology recycling this waste into a soil amendment that could be used by the 2500 vegetable producers of Accra and its surrounding areas.  相似文献   

11.

Background

Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.

Methodology/Principal Findings

To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.

Conclusions/Significance

Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and/or function.  相似文献   

12.
M. Mura  F. Orrù  A. Cau 《Hydrobiologia》2006,557(1):51-57
Some aspects of the reproductive biology of two hermit crabs Pagurus alatus (Fabricius, 1775) and P. excavatus (Herbst, 1791) were studied. Specimens were collected monthly from April 2000 to March 2001 on the continental shelf and the upper-middle slope off the Southwestern coasts of Sardinia, in the central-western Mediterranean Sea. Crab size (minimum and maximum shield length) was 1.7 and 9.5 mm for 1150 females of P. alatus; 4.0 and 10.4 mm for 347 females of P. excavatus, respectively. Females of P. alatus with ripe ovaries were only found in February-April and ovigerous females were observed throughout the year except in March, with the highest incidence in summer. Females of P. excavatus with fully developed ovaries were collected during all months of the year reaching a peak from April to June. Ovigerous females of P. excavatus occurred throughout the year and the main spawning period occurred in March and April. Fecundity of both species was calculated to assess seasonal variation of reproductive intensity and was positively correlated with the size of the individuals. Monthly fecundity did not reveal significant differences in P. alatus ovigerous females, whereas P. excavatus exhibited significant differences in monthly fecundity depending on the time of year. Difference in fecundity among P. alatus and P. excavatus can be related to the size of the ovigerous females and species of hermit crab, but their different reproductive strategies suggest that they are specifically related to different environmental conditions.  相似文献   

13.
Most of the previous studies on vermicomposting have been conducted as lab trials at small-scale (SS) using small quantity of waste mixtures. Efforts were made in this study to stabilize the sewage sludge amended with sugarcane trash using pilot-scale (PS) vermicomposting operation. Results of PS vermireactors were compared with SS trials in terms of quality of ready vermicompost and earthworm production rates. Results thus suggest a clear-cut difference between SS and PS in terms of waste mineralization rate and earthworm production. The waste mineralization rate in PS was significantly lower than SS (P < 0.05). Total N and available P were higher in end product from SS, while exchangeable cations (Ca2+ and K+) showed reverse behavior during the process of waste stabilization. There was significant difference between PS and SS for metal remediation rate in end materials. The growth and reproduction pattern of Eisenia fetida was completely different in PS as compared to lab trials, i.e. SS. Probably, the distinct earthworm stocking density and microclimate conditions in SS and PS were responsible for observed differences in results of waste mineralization rate and earthworm growth. This study suggests that SS laboratory trials may differ in PS field operations due to distinct behavior of earthworm in field conditions. It is concluded that SS laboratory trials should be tested in field at large-scale in order to measure the feasibility of technology for large-scale waste decomposition operations in open conditions.  相似文献   

14.
Cellulose is the most abundant polymer in nature and constitutes a large pool of carbon for microorganisms, the main agents responsible for soil organic matter decomposition. Cellulolysis occurs as the result of the combined action of fungi and bacteria with different requirements. Earthworms influence decomposition indirectly by affecting microbial population structure and dynamics and also directly because the guts of some species possess cellulolytic activity. Here we assess whether the earthworm Eisenia fetida (Savigny 1826) digests cellulose directly (i.e., with its associated gut microbiota) and also whether the effects of E. fetida on microbial biomass and activity lead to a change in the equilibrium between fungi and bacteria. By enhancing fungal communities, E. fetida would presumably trigger more efficient cellulose decomposition. To evaluate the role of E. fetida in cellulose decomposition, we carried out an experiment in which pig slurry, a microbial-rich substrate, was treated in small-scale vermireactors with and without earthworms. The presence of earthworms in vermireactors significantly increased the rate of cellulose decomposition (0.43 and 0.26% cellulose loss day−1, with and without earthworms, respectively). However, the direct contribution of E. fetida to degradation of cellulose was not significant, although its presence increased microbial biomass (Cmic) and enzyme activity (cellulase and β-glucosidase). Surprisingly, as fungi may be part of the diet of earthworms, the activity of E. fetida triggered fungal growth during vermicomposting. We suggest that this activation is a key step leading to more intense and efficient cellulolysis during vermicomposting of organic wastes.  相似文献   

15.
Laboratory experiment on vermicomposting of distillation waste of java citronella (Cymbopogon winterianus Jowitt.) was carried out employing Eudrilus eugeniae, in two seasonal trials, covering summer and winter periods. Two vermicomposting treatments were conducted in earthen pots, one with citronella plant waste only (CW) and the other, a mixture of citronella waste and cowdung in the proportion 5:1 (CW + CD). Vermicomposting of citronella waste resulted reduction in C/N ratio (83.5-87.7%), enhancement of ash content and a number of macro and micronutrients. The FT-IR spectroscopy of the vermicompost revealed the reduction in aliphatic and aromatic compound as well as increase in amide group after the 105 days stabilization process. The vermicompost output was significantly enhanced in CW + CD treatment than CW treatment. Even, nutrient content of the vermicompost was also higher in CW + CD treatment than CW alone indicating the positive role of cowdung in improvement of quantity and quality.  相似文献   

16.
Yadav A  Garg VK 《Bioresource technology》2011,102(10):5891-5895
This study reports the results of vermicomposting with Eisenia fetida of Parthenium hysterophorus mixed with cow dung in different ratios (25%, 50% and 75%) in a 18 weeks experiment. In all the treatments, a decrease in pH, OCtotal and C:N ratio, but increase in EC, Ntotal, Paval, Catotal, Ktotal and heavy metals was recorded. The cocoons production and growth rate (biomass gain worm−1 day−1) were maximum in 100% cow dung. The results indicated that parthenium can be a raw material for vermicomposting if mix with cow dung in appropriate quantity.  相似文献   

17.
A laboratory experiment was conducted to evaluate the enzyme activities and chemical changes recorded in a recalcitrant phenolic-rich waste after treatment with Pleurotus ostreatus or Eisenia fetida. The waste used was wet olive cake (alperujo in Spanish), a waste produced in huge amounts by the olive oil industry. Both P. ostreatus and E. fetida were very effective in removing phenolic compounds, the initial concentration in the wet olive cake being reduced in both cases by around 90%. Laccase and manganese peroxidase activities were measured in the growth medium of P. ostreatus, and catechol 2,3 dioxygenase activity was only detected in the waste treated with Eisenia; these could be the main factors responsible for the oxidation of phenolic compounds. Increases of dehydrogenase and β-glucosidase activities were detected in the degraded wet olive cake by fungi or earthworms. In comparison with the natural wet olive cake, the degraded products had lower total organic carbon and humic acid contents but were rich in nitrogen and other nutrients, having lower C:N ratios. In addition, the toxicity of the wet olive cake against the seeds of Lepidium sativum significantly decreased after degradation. The low toxicity as well as moderate stability and maturity recorded in the wet olive cake treated with P. ostreatus or E. fetida imply that these products could be used as soil amendments.  相似文献   

18.
Abstract

Vermicomposting of phumdi biomass is a good alternative for protecting Loktak Lake and is advantageous for agriculture purposes. Research was carried out on bioavailability and leachability of nutrients (Na, K, Ca and Mg) and heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) during vermicomposting of phumdi biomass for 45 days using Eisenia fetida earthworm. The bioavailability of heavy metals was determined in the form of water soluble and diethylene triamine penta-acetic acid (DTPA) extractable. The toxicity characteristic leaching procedure test was performed to determine the leachable heavy metals during the vermicomposting process. The concentration of nutrients increased during the process; whereas the concentration of water soluble, DTPA extractable and leachable heavy metals decreased significantly in all the trials. The vermicomposting of phumdi biomass by Eisenia fetida was very effective for the reduction of bioavailability and leachability of selected heavy metals. The leachability test confirmed that prepared vermicompost is not hazardous for soil, plants and human health. The possibility of using earthworms to mitigate the metal toxicity and to enhance the nutrient profile in phumdi biomass vermicompost, is advantageous in sustainable land renovation practices on a low-input basis.  相似文献   

19.
Body size and colouration are two characters commonly used in the taxonomy of many animal taxa. However, they are seldom used by earthworm taxonomists because they are subject to environmental influences and tend to vary intraspecifically. In the present study, DNA sequences of the mitochondrial COI gene are used to evaluate whether specimens of the megascolecid earthworm Amynthas wulinensis Tsai, Shen & Tsai, 2001 that differ in body size and/or colouration belong to different genetic lineages. Phylogenetic analyses and morphological comparisons indicate that A. wulinensis in the previous broad sense is a species complex composed of three species differing in body size, colouration, and genital markings. Consequently, two new species, Amynthas lini and Amynthas meishanensis, are described. Taxonomic affinities of the A. wulinensis species complex are discussed, as is the feasibility of using body size and colouration in earthworm taxonomy.  相似文献   

20.
Browsing ruminants have access to different biomass, depending on how high they can reach. Foliage consisting of leaves and green pods from Acacia senegal, Pterocarpus lucens and Guiera senegalensis, was collected according to height above ground accessible to either sheep (0.90 m), goats (1.65 m) or cattle (1.50 m). There was a significant variation in the chemical composition of the biomass between species. The crude protein (CP) content was 114, 157 and 217 g/kg dry matter (DM) and the neutral detergent fiber (aNDF) content 604, 534 and 412 g/kg DM for G. senegalensis, P. lucens and A. senegal, respectively. There was no significant variation in chemical composition according to the height accessible by cattle, sheep or goats. The voluntary intake was studied using eight goats per diet. The six diets consisted of the three browse leaves and two pods (A. senegal and P. lucens) and a control. The leaves were fed combined with hay of Schoenefeldia gracilis (maximum 30%) and the control was pure hay. Apparent digestibilities of the same diets, with the exception of G. senegalensis, were measured using five goats per diet. All browse fodders used in the feeding and digestibility trials were high in CP (105–170 g/kg DM) and lignin (164–234 g/kg DM except A. senegal leaves) and low in fiber (322–590 g/kg DM of NDF) compared to the hay (31 g/kg DM of CP and 755 g/kg DM of NDF). The highest intake was of the P. lucens diet (864 g) and the lowest of the G. senegalensis diet (397 g). The intake of pods from A. senegal was higher (1033 g) than from P. lucens pods (691 g). The apparent digestibility of OM and CP in the browse leaves was 0.63 and 0.57 and 0.63 and 0.64 for A. senegal and P. lucens, respectively, higher than for the hay, which showed higher digestibility of NDF. A. senegal pods had higher digestibility for all nutrients than P. lucens pods. Based on the high CP content and the intake and digestibility characteristics, P. lucens leaves and A. senegal leaves and pods can be recommended as protein supplements to low quality diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号