首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X- 100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed.  相似文献   

2.
The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts were studied by thin sectioning of flat-embedded untreated and glycerol-extracted cells, histochemical and immunological electron microscopic procedures, and the negative staining of cells cultured on electron microscopic grids. In these cultured cells, the microfilaments are arranged into thick bundles that are disposed longitudinally and in looser arrangements in the fusiform-shaped cells. In the latter case, they are concentrated along the margins of the flattened cell, on the dorsal surface, and particularly at the ends of the cell and its ventral surface, where contact is made with the plastic dish or with other cells. Extracellular filaments, presumably originating from within the cell, are found at these points of contact. The microfilaments are composed in part of an actin-like protein. These filaments are between 70 and 90 Å in diameter, they are stable in 50% glycerol, they have an endogenous ATPase (myosin-like?) associated with them, they bind rabbit muscle heavy meromyosin, and they specifically bind antibody directed against isolated actin-like protein. In the cultured chick embryo fibroblasts, the microfilaments are essential for the establishment and maintenance of form, and they are probably critical elements for adhesion and motility. The microfilaments might also serve as stabilizers of intramembranous particle fluidity.  相似文献   

3.
The terminal web. A reevaluation of its structure and function   总被引:33,自引:29,他引:4  
The apical cytoplasm of epithelial cells of the small and large intestines has been examined by freeze-etch techniques as well as conventional and high voltage electron microscopy of sectioned material to gain a better understanding of the fine structural organization of the terminal web region. In the small intestine the terminal web exhibits a distinct stratification caused by the association of different sets of filaments with the three members of the junctional complex. Individual filaments of this network are closely associated with the sealing elements of the tight junctions, the surface of the core microfilament bundles, and the intermicrovillar plasma membrane. This region of the terminal web is the apical zone. The adherens zone appears as a band of interwoven filaments of two different diameters extending across the cytoplasm at the level of the intermediate junction. Within this region of the terminal web, individual 60-70 A actin-like filaments separate from the bundles of core microfilaments to interact with one another and with filaments of similar diameter from the zonula adherens. 100 A tonofilaments also contribute to the adherens zone, presumably stabilizing the orientation of the actin-like filaments. The basal zone which underlies the adherens zone consists of closely interwoven bundles of tonofilaments that are anchored to and interconnect the spot desmosomes. Within the large intestine the cytoplasmic microfilaments form a looser and less clearly stratified network which nevertheless retains the same basic organization found in the small intestine. Transmembrane linkers appear to originate within the cytoplasmic plaques of the spot desmosomes, pass through the plasma membranes, and meet in a staggered configuration in the intercellular space; these linkers may thus mediate the actual mechanical coupling between the cytoskeletal networks of tonofilament bundles of adjacent cells. This integrated system of cytoplasmic filaments and intercellular junctions endows the apical cytoplasm with both the flexibility and the stability necessary for the normal functioning of the epithelium.  相似文献   

4.
In the present study, we report on haemocyte distribution, determined by a Coulter Counter, in the clam Tapes philippinarum. In addition, cytoskeleton components of haemocytes were examined using specific probes for F-actin and alpha-tubulin. The mean number of circulating haemocytes was 5 (x10(6))cells/ml haemolymph. Two main haemocyte populations were found in the haemolymph: small cells, 2-3microm in diameter and 10-100fl in volume; and large cells, 6-10microm in diameter and 150-400fl in volume. Analysis of the haemocyte cytoskeleton revealed bundles of actin filaments oriented according to the cell major axis, and microtubules radiating from the microtubule-organizing centre in proximity of the nucleus. Interestingly, mitotic spindles were also found radiating from the microtubule-organizing centres, located at the spindle poles (centrosomes) of undifferentiated cells. On the basis of both our previous findings regarding circulating stem cells (Cima, F., Matozzo, V., Marin, M.G., Ballarin, L., 2000. Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunctional characterisation. Fish Shellfish Immunol 10, 677-693) and new information from the present study, we suggest that haemoblasts are able to divide in the haemolymph of T. philippinarum. To our knowledge, this is the first report of mitotic spindles in circulating haemocytes from a bivalve species.  相似文献   

5.
The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.  相似文献   

6.
《The Journal of cell biology》1984,99(5):1655-1668
Cultured fibroblasts or epithelial cells derived from Xenopus laevis embryos were directly frozen, freeze-substituted by an improved method, and then either critical-point-dried and viewed as whole mounts, or embedded and thin sectioned. In thin regions of these cells, where ice crystal artifacts are absent, the cytoplasm consisted of a dense, highly interconnected meshwork of filaments, embedded in a finely granular ground substance. The meshwork in directly frozen, intact cells was compared with that in cells that were lysed (physically, with detergents, or with filipin), or fixed with glutaraldehyde before freezing. Although filaments tended to be less numerous in lysed cells, their overall organization was the same as that in intact cells. However, fixation with glutaraldehyde before freezing distorted the meshwork to variable degrees depending on the osmolarity of the fixation buffer, and also obscured the granular ground substance which is obvious in directly frozen cells. With optimal preparative methods, the cytoplasm of these directly frozen cells is shown to consist of a cytoskeleton composed of discrete interwoven filaments interconnected by numerous finer filaments and a readily extractable granular matrix which presumably represents aggregations of cytoplasmic proteins.  相似文献   

7.
Dr. A. Forer  O. Behnke 《Chromosoma》1972,39(2):145-173
Decorated actin-like filaments were seen in spindles after crane fly spermatocytes were glycerinated and then treated with rabbit skeletal muscle heavy meromyosin (HMM). Both ATP and pyrophosphate inhibited the HMM reaction. In prometaphase, metaphase, and mid-anaphase cells, actin-like filaments were seen near regions where chromosomal spindle fibres are seen in living cells, and were oriented in the pole-to-pole direction. In the interzone of anaphase cells, actin-like filaments were not oriented in a preferential direction when they were not associated with the microtubules attached to the sex chromosomes. No filaments were seen in glycerinated spindles not treated with HMM. We discuss reasons why filaments might not be seen without prior HMM treatment, and we discuss the possible role of the actin-like filaments in the spindles. — Spindle microtubules often were not seen in cells treated with HMM. This depended on the stage of division: in prometaphase no microtubules were seen; in metaphase microtubules were seen, in apparently normal numbers; in mid-anaphase, microtubules between the autosomes and the poles were seen in reduced numbers, those associated with the equatorial sex-chromosomes were seen in apparently normal numbers, while those between the separating autosomal half-bivalents were not seen. Microtubules were not seen in glycerinated spindles not treated with HMM, suggesting that HMM in some way affects microtubule stability. The question of microtubule stability is briefly discussed.  相似文献   

8.
Summary Retinal pigmented epithelial cells of chicken have circumferential microfilament bundles (CMBs) at the zonula adherens region. Isolated CMBs are polygons filled with a meshwork composed primarily of intermediate filaments; they show three major components of 200000, 55000, and 42000 daltons in SDS-gel electrophoresis. Here we have characterized the 55000-dalton protein immunochemically and ultrastructurally. Immunoblotting and immunofluorescence microscopy have shown that the 55000-dalton protein is an intermediate filament protein, vimentin.Vimentin filaments changed their distribution during differentiation of pigmented epithelial cells in culture. The protein in the elongated cells showed a fibroblast-type pattern of intermediate filaments. During epithelium formation, the filaments were uniformly distributed and formed a finer meshwork at the apical level. In pigmented epithelial cells that differentiated and matured in culture, vimentin and actin exhibited their characteristic behavior after treatment with colcemid. In the central to basal region of the cell, intermediate filaments formed thick perinuclear bundles. In the apical region, however, intermediate filaments changed in organization from a nonpolarized meshwork to a polarized bundle-like structure. Simultaneously, new actin bundles were formed, running parallel to the intermediate filaments. This suggests that there is some interaction between microfilaments and intermediate filaments in the apical region of these cells.  相似文献   

9.
Electron microscope observation revealed the presence of many fine filaments within the cytoplasm surrounding the leading edge of the septum in telophase cells of Spirogyra verruculosa Jao. These filaments, about 7 nm each in diameter, ran parallel to one another along the leading edge of the septum and, sometimes, they appeared to be gathered into at least two bundles. These filament distribution patterns coincided well with those of the fluorescence of rhodamine-labeled phalloidin in the vicinity of the septum in telophase cells. The present results suggest that the fine filaments observed within the cytoplasm surrounding the leading edge of the septum may be actin filaments.  相似文献   

10.
Wound healing of deep and extensive burns can induce hypertrophic scar formation, which is a detrimental outcome for skin functionality. These scars are characterized by an impaired collagen fibril organization with fibril bundles oriented parallel to each other, in contrast with a basket weave pattern arrangement in normal skin. We prepared a reconstructed skin made of a collagen sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 20 days. We transplanted it on the back of nude mice to assess whether this reconstructed skin could prevent scar formation. After transplantation, murine blood vessels had revascularized one-third of the sponge thickness on the fifth day and were observed underneath the epidermis at day 15. The reconstructed skin extracellular matrix was mostly made of human collagen I, organized in loosely packed fibrils 5 days after transplantation, with a mean diameter of 45 nm. After 40-90 days, fibril bundles were arranged in a basket weave pattern while their mean diameter increased to 56 nm, therefore exactly matching mouse skin papillary dermis organization. Interestingly, we showed that an elastic system remodeling was started off in this model. Indeed, human elastin deposits were organized in thin fibrils oriented perpendicular to epidermis at day 90 whereas elastic system usually took years to be re-established in human scars. Our reconstructed skin model promoted in only 90 days the remodeling of an extracellular matrix nearly similar to normal dermis (i.e. collagen fibril diameter and arrangement, and the partial reconstruction of the elastic system).  相似文献   

11.
Previous observations indicated that the lamellipodium ("leading edge") of fibroblasts contains a dense meshwork, as well as numerous bundles (microspikes) of actin filaments. Most, if not all, of the filaments have a uniform polarity, with the "barbed" end associated with the membrane. I investigated whether and how actin subunits exchange in this region by microinjecting living gerbil fibroma cells (IMR-33) with actin that had been labeled with iodoacetamidotetramethylrhodamine. After incorporation of the labeled actin into the lamellipodium, I used a laser microbeam to photobleach a 3-4-micron region at and surrounding a microspike, without disrupting the integrity of the structure. I then recorded the pattern of fluorescence recovery and analyzed it using a combination of TV image intensification and digital image processing techniques. Fluorescence recovery was first detected near the edge of the cell and then moved toward the cell's center at a constant rate of 0.79 +/- 0.31 micron/min. When only part of the lamellipodium near the edge of the cell was photobleached, the bleached spot also moved toward the cell's center and through an area unbleached by the laser beam. These results indicated that steady state incorporation of actin subunits occurred predominantly at the membrane-associated end of actin filaments, and that actin subunits in the lamellipodium underwent a constant movement toward the center of the cell. I suggest that treadmilling, possibly in combination with other molecular interactions, may provide an effective mechanism for the movement of actin subunits and the protrusion of cytoplasm in the lamellipodium of fibroblasts.  相似文献   

12.
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibres behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibres). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.  相似文献   

13.
Summary The organization of collagen fibrils in the rat sciatic nerve was studied by scanning electron microscopy after digestion of cellular elements by sodium hydroxide treatment, and by conventional transmission electron microscopy. The epineurium consisted mainly of thick bundles of collagen fibrils measuring about 10–20 m in width; they were wavy and ran slightly obliquely to the nerve axis. Between these collagen bundles, a very coarse meshwork of randomly oriented collagen fibrils was present. In the perineurium, collagen fibrils occupied the interspaces between the concentrically arranged perineurial cells; in each interspace, they formed a sheet of characteristic lacework elaborately interwoven by thin (about 3 m or less in width) bundles of collagen fibrils. In the subperineurial region, there was a distinct sheet of densely woven collagen fibrils between the perineurium and underlying endoneurial fibroblasts. In the endoneurium, collagen fibrils surrounded individual nerve fibers in two layers as scaffolds: the inner layer was made up of a delicate meshwork of very fine collagen fibrils, and the outer one consisted of longitudinally oriented bundles of about 1–3 m in width. The collagen fibril arrangement described above may protect the nerve fibers against external forces.  相似文献   

14.
Unfertilized Paracentrotus lividus egg cytoskeleton is prepared by mild, nonionic detergent extraction at 4 degrees C in buffer systems containing either 2-methyl-2,4-pentanediol (hexylene glycol) or glycerol. These extractions allow the isolation of cytomatrices that maintain the egg form and are 70-80 micron in diameter. DNase inhibition assays show that actin is in polymerized form in these cytomatrices. Ultrastructural observations reveal that the cytoskeletons are made up essentially of 2 categories of filaments, 7-8-nm and 2-4-nm in diameter, respectively. After heavy meromyosin labelling, short, radiating actin filaments are seen in the cortical region, while longer actin filaments are found in the internal region of these cytomatrices. The 2-4-nm filaments of still unknown biochemical nature are organized in a meshwork. In contrast to results found with fertilized eggs, bundles of actin filaments and microtubules are absent; 8-13-nm filaments are not detected.  相似文献   

15.
Distribution of actin filaments of human epidermal keratinocyte in the primary culture was observed by immunofluorescence staining. In the cytoplasm, actin was distributed diffusely, and strong antiactin immunofluorescence was observed along the leading edge, showing ruffling and the contact zone to the neighboring cell. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced organization of actin filaments. Many short bundles of actin filaments appeared shortly after the addition of 16 nM TPA, and large actin-containing ribbons of crescent-shape, circular or gyrus-like form were sometimes observed. Phorbol-12-13-diacetate, a non-promoter phorbol ester, induced a similar change, but to a much lesser extent. Addition of 1 mM cycloheximide did not interfere with the organization of actin filaments by TPA. La3+ aborted it completely possibly by replacing Ca2+ at the binding site of the cell surface, and the cultivation in low Ca2+ environment suppressed the effect of TPA. These findings make a contrast to those reported in fibroblasts, and may be linked to the characteristic response of cultured human keratinocytes to TPA in the proliferation of cells and induction of ornithine decarboxylase.  相似文献   

16.
The dermis of the frog skin (Rana esculenta) displayed a remarkable organization of vertical and horizontal tracts. Vertical thick tracts connected the dermal Stratum spongiosum with the subcutaneous tissue. Horizontal thin tracts were found alongside and contiguous to them. The thick tracts were sheathed by collagen fibrils of the Stratum compactum which were vertically oriented (i.e. parallel to the axes of the tracts) according to the horizontal and orthogonal arrangement of the collagen bundles of the Stratum compactum. The thin tracts devoid of collagenous sheath were formed by clear spaces between superimposed collagen bundles of the dermal Stratum compactum. On vertical sections, the thick tracts were seen to contain fibronectin (FN), detected by indirect immunoperoxidase. Continuous vertical FN lines were centred in these tracts. On horizontal sections, a clear zone around these FN-centred lines was also sheathed by FN. The thick tracts contained flattened pigmentary cells and fibroblasts; these cells were FN-outlined. The thin tracts contained patches of FN and FN-outlined fibroblasts. In culture, in vertical thick tracts, both pigmentary cells and fibroblasts disappeared when antiserum to FN was added to the culture medium. This suggested that thick tracts were pathways allowing pigmentary cells to move upward or downward between their usual upper dermal and lower subcutaneous localizations. Fewer fibroblasts were found in the thin tracts in the presence of antiserum to FN.  相似文献   

17.
By utilizing a combination of several ultrastructural techniques, we have been able to demonstrate differences in filament organization on the adherent plasma membranes of spreading and mobile PMN as well as within the extending lamellipodia. To follow the subplasmalemmal filaments of this small amoeboid cell during these kinetic events, we sheared off the upper portions of cells onto glass and carbon surfaces for 30 s--5 min. The exposed adherent membranes were immediately fixed and processed for high-resolution SEM or TEM. Whole cells were also examined by phase contrast microscopy, SEM, and oriented thin sections. Observed by SEM, the inner surface of nonadherent PMN membranes is free of filaments, but within 30 s of attachment to the substrate a three-dimensional, interlocking network of globular projections and radiating microfilaments--i.e., a subplasmalemmal filament complex--is consistently demonstrable (with or without postfixation in OsO4). Seen by TEM, extending lamellipodia contain a felt of filamentous and finely granular material, distinct from the golbule/filament complex of the adjacent adherent membrane. In the spread cell, this golbule-filament complex covers the entire lower membrane and increases in filament-density over the next 2--3 min. By 3--5 min after plating, as the PMN rounds up before the initiation of amoeboid movements, another pattern emerges--circumferential bands of anastomosing filament bundles in which thick, short filaments resembling myosin are found. This work provides structural evidence on the organization of polymerized contractile elements associated with the plasma membrane during cellular adherence.  相似文献   

18.
Leading edge movement and ultrastructure in mouse macrophages   总被引:8,自引:0,他引:8  
The first event in the process of translocation of a cell over a substrate is the forward protrusion of a thin layer of cytoplasm, sometimes referred to as the leading edge. To gain more direct information on structural reorganizations associated with protrusion we have documented the ultrastructure of the actin cytoskeleton of mouse macrophages whose history of locomotion prior to fixation for electron microscopy had been recorded by video microscopy. It is shown that rapid protrusion is associated with the formation of a dense, diagonal network of actin filaments, lacking organized bundles. In cell edges that showed minor fluctuations back and forth over a period of 30 sec or more no dense meshworks were found: instead, a loose peripheral bundle of actin filaments was commonly observed. Cell edges that first protruded and then retracted showed a similar ultrastructure to those that exhibited only forward movement, but the width of the leading edge meshwork was, by comparison, reduced. Measurements showed that there was an approximate correlation between the leading edge mesh width and the net forward translocation observed during the terminal 30 sec, up to fixation. The results are discussed in relation to present concepts of the protrusion mechanism.  相似文献   

19.
Arp2/3 complex nucleates dendritic actin networks and plays a pivotal role in the formation of lamellipodia at the leading edge of motile cells. Mouse fibroblasts lacking functional Arp2/3 complex have the characteristic smooth, veil-like lamellipodial leading edge of wild-type cells replaced by a massive, bifurcating filopodia-like protrusions (FLPs) with fractal geometry. The nanometer-scale actin-network organization of these FLPs can be linked to the fractal geometry of the cell boundary by a self-organized criticality through the bifurcation behavior of cross-linked actin bundles. Despite the pivotal role of the Arp2/3 complex in cell migration, the cells lacking functional Arp2/3 complex migrate at rates similar to wild-type cells. However, these cells display defects in the persistence of a directional movement. We suggest that Arp2/3 complex suppresses the formation of FLPs by locally fine-tuning actin networks and favoring dendritic geometry over bifurcating bundles, giving cells a distinct evolutionary edge by providing the means for a directed movement.  相似文献   

20.
In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号