首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine D2 receptors (D2Rs; short form, which is one of the alternative splicing variants) expressed in COS-7 cells are internalized in an agonist-dependent manner only when G protein-coupled receptor kinase 2 (GRK2) is coexpressed [Ito, K., Haga, T., Lameh, J. & Sadée, W., (1999) Eur. J. Biochem. 260, 112-119]. We have examined the effects of coexpression of dynamin, a small molecular mass GTP-binding protein, rab5A, and their mutants on the internalization of D2Rs in the presence of both dopamine (10 or 100 microM) and GRK2. The rate and extent of D2R internalization was increased or decreased by coexpression of dynamin I or a dominant-negative form of dynamin I (dynamin I K44E), respectively. The effects of coexpressing these two dynamins were more prominent at 10 microM dopamine than at 100 microM. In the presence of 10 microM dopamine, internalization of D2R was completely suppressed when dynamin I K44E was coexpressed, and the half-life (t 1/2) of D2R internalization decreased relative to cells not expressing dynamin from 82 to 29 min when dynamin I was coexpressed. Internalization of D2Rs was facilitated or suppressed by coexpression of a constitutively active form of rab5A (rab5A Q79L) or a dominant-negative form of rab5A (rab5A S34N), respectively. The t 1/2 of D2R internalization at 10 microM dopamine decreased from 82 to 16 min in cells coexpressing rab5A Q79L. The effect of coexpression of rab5A S34N was more apparent at 100 microM dopamine than at 10 microM; the t 1/2 of D2R internalization at 100 microM dopamine increased from 20 to 56 min and the proportion of internalized D2Rs after 120 min decreased from 53 to 28%. These results indicate that the internalization of D2Rs is dependent on the action of dynamin as well as GRK2, and is regulated by the action of rab5A.  相似文献   

2.
Increased activity of D2 receptors (D2Rs) in the striatum has been linked to the pathophysiology of schizophrenia. To determine directly the behavioral and physiological consequences of increased D2R function in the striatum, we generated mice with reversibly increased levels of D2Rs restricted to the striatum. D2 transgenic mice exhibit selective cognitive impairments in working memory tasks and behavioral flexibility without more general cognitive deficits. The deficit in the working memory task persists even after the transgene has been switched off, indicating that it results not from continued overexpression of D2Rs but from excess expression during development. To determine the effects that may mediate the observed cognitive deficits, we analyzed the prefrontal cortex, the brain structure mainly associated with working memory. We found that D2R overexpression in the striatum impacts dopamine levels, rates of dopamine turnover, and activation of D1 receptors in the prefrontal cortex, measures that are critical for working memory.  相似文献   

3.
Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further validated by GST-pulldown assays and coimmunoprecipitation from mammalian brain. Ultrastructural analysis of TRPC1 and D2R expression indicates colocalization of the two proteins within the cell body and dendrites of cortical neurons. In cultured cells, expression of D2Rs was found to increase expression of TRPC1 at the cell surface by 50%. These findings shed new light on the constituents of the D2R signalplex, and support the involvement of D2Rs in cellular calcium signaling pathways via a novel link to TRPC channels.  相似文献   

4.
Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further validated by GST-pulldown assays and coimmunoprecipitation from mammalian brain. Ultrastructural analysis of TRPC1 and D2R expression indicates colocalization of the two proteins within the cell body and dendrites of cortical neurons. In cultured cells, expression of D2Rs was found to increase expression of TRPC1 at the cell surface by 50%. These findings shed new light on the constituents of the D2R signalplex, and support the involvement of D2Rs in cellular calcium signaling pathways via a novel link to TRPC channels.  相似文献   

5.
The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN) and substantia nigra reticulata (SNr) neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons.  相似文献   

6.
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.  相似文献   

7.
Clathrin-dependent endocytosis of Na(+),K(+)-ATPase in response to dopamine regulates its catalytic activity in intact cells. Because fission of clathrin-coated pits requires dynamin, we examined the mechanisms by which dopamine receptor signals promote dynamin-2 recruitment and assembly at the site of Na(+),K(+)-ATPase endocytosis. Western blotting revealed that dopamine increased the association of dynamin-2 with the plasma membrane and with phosphatidylinositol 3-kinase. Dopamine inhibited Na(+),K(+)-ATPase activity in OK cells and in those overexpressing wild type dynamin-2 but not in cells expressing a dominant-negative mutant. Dephosphorylation of dynamin is important for its assembly. Dopamine increased protein phosphatase 2A activity and dephosphorylated dynamin-2. In cells expressing a dominant-negative mutant of protein phosphatase 2A, dopamine failed to dephosphorylate dynamin-2 and to reduce Na(+),K(+)-ATPase activity. Dynamin-2 is phosphorylated at Ser(848), and expression of the S848A mutant significantly blocked the inhibitory effect of dopamine. These results demonstrate a distinct signaling network originating from the dopamine receptor that regulates the state of dynamin-2 phosphorylation and that promotes its location (by interaction with phosphatidylinositol 3-kinase) at the site of Na(+),K(+)-ATPase endocytosis.  相似文献   

8.
Metaplasticity is a higher form of synaptic plasticity that is essential for learning and memory, but its molecular mechanisms remain poorly understood. Here, we report that metaplasticity of transmission at CA1 synapses in the hippocampus is mediated by Src family kinase regulation of NMDA receptors (NMDARs). We found that stimulation of G-protein-coupled receptors (GPCRs) regulated the absolute contribution of GluN2A-versus GluN2B-containing NMDARs in CA1 neurons: pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs) selectively recruited Src kinase, phosphorylated GluN2ARs, and enhanced their functional contribution; dopamine 1 receptors (D1Rs) selectively stimulated Fyn kinase, phosphorylated GluN2BRs, and enhanced these currents. Surprisingly, PAC1R lowered the threshold for long-term potentiation while long-term depression was enhanced by D1R. We conclude that metaplasticity is gated by the activity of GPCRs, which selectively target subtypes of NMDARs via Src kinases.  相似文献   

9.
We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R.  相似文献   

10.
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.  相似文献   

11.
A number of G protein-coupled receptors (GPCRs) localize to primary cilia but the functional significance of cilia to GPCR signaling remains incompletely understood. We investigated this question by focusing on the D1 dopamine receptor (D1R) and beta-2 adrenergic receptor (B2AR), closely related catecholamine receptors that signal by stimulating production of the diffusible second messenger cyclic AMP (cAMP) but differ in localization relative to cilia. D1Rs robustly concentrate on cilia of IMCD3 cells, as shown previously in other ciliated cell types, but disrupting cilia did not affect D1R surface expression or ability to mediate a concentration-dependent cAMP response. By developing a FRET-based biosensor suitable for resolving intra- from extra- ciliary cAMP changes, we found that the D1R-mediated cAMP response is not restricted to cilia and extends into the extra-ciliary cytoplasm. Conversely the B2AR, which we show here is effectively excluded from cilia, also generated a cAMP response in both ciliary and extra-ciliary compartments. We identified a distinct signaling effect of primary cilia through investigating GPR88, an orphan GPCR that is co-expressed with the D1R in brain, and which we show here is targeted to cilia similarly to the D1R. In ciliated cells, mutational activation of GPR88 strongly reduced the D1R-mediated cAMP response but did not affect the B2AR-mediated response. In marked contrast, in non-ciliated cells, GPR88 was distributed throughout the plasma membrane and inhibited the B2AR response. These results identify a discrete ‘insulating’ function of primary cilia in conferring selectivity on integrated catecholamine signaling through lateral segregation of receptors, and suggest a cellular activity of GPR88 that might underlie its effects on dopamine-dependent behaviors.  相似文献   

12.

Background

Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R) availability in the brain. Such a decrease consequently alters the ratio of D1R∶D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified.

Methods and Findings

Ethics statement: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT) and G protein coupled receptor associated sorting protein-1 (GASP-1) knock out (KO) mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine.

Conclusions

Together, our data suggests that changes in the ratio of the D1R∶D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.  相似文献   

13.
Xie G  Ye JH 《PloS one》2012,7(5):e36716
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.  相似文献   

14.
Two isoforms of the dopamine D2 receptor, D2L (long) and D2S (short), differ by the insertion of a 29-amino acid specific to D2L within the putative third intracellular loop of the receptor. Here, we examined D2 receptor-mediated MAPK activation in association with receptor internalization. Overexpression of beta-arrestin 1 and 2 increased the D2S-mediated activation of MAPK, whereas it did not affect the activation of MAPK by D2L. Expression of a dominant negative beta-arrestin 2 (319-418) mutant and of a dominant negative dynamin I (K44A) mutant inhibited the activation of MAPK by D2S, but not the activation of MAPK by D2L. Treatment with inhibitors of internalization, i.e. concanavalin A and monodansylcadaverin, blocked D2S-mediated MAPK activation but not D2L-mediated activation. By confocal microscopy, we observed beta-arrestin 1 and 2, translocated to the plasma membrane and colocalized with D2L and D2S receptors upon stimulation with dopamine, and this was followed by the translocation of receptors into endocytic vesicles. Moreover, the expression of the beta-arrestin 2 (319-418) mutant blocked the internalization of both D2L and D2S. In addition, although K44A dynamin mutant expression did not alter D2L internalization, it completely blocked the internalization of D2S. The stimulation of D2L induces activation of MAPK via transactivation of the platelet-derived growth factor receptor, whereas D2S does not. Taken together, these data suggest that D2L activates MAPK signaling by mobilizing the growth factor receptor, platelet-derived growth factor receptor, whereas D2S appears to activate MAPK signaling by mobilizing clathrin-mediated endocytosis in a beta-arrestin/dynamin-dependent manner.  相似文献   

15.
Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs.  相似文献   

16.
Dopamine D2 receptor (D2R) plays a pivotal role in nervous systems. Its dysfunction leads to the schizophrenia, Parkinson’s diseases and drug addiction. Since the crystal structure of the D2R was not solved yet, discovering of potent and highly selective anti-psychotic drugs carry challenges for different neurodegenerative diseases. In the current study, we modeled the three-dimensional (3D) structure of the D2R based on a recently crystallized structure of the dopamine D3 receptor. These two receptors share a high amino acid sequence homology (>70%). The interaction of the modeled receptor with well-known atypical and typical anti-psychotic drugs and the inhibition mechanisms of drugs at the catalytic domain were studied via atomistic molecular dynamics simulations. Our results revealed that, class-I and class-II forms of atypical and typical D2R antagonists follow different pathways in the inhibition of the D2Rs.  相似文献   

17.
Aging causes multiple changes in the mammalian brain, including changes in synaptic signaling. Previous reports have shown increased extracellular adenosine in the aging brain, and we recently reported that activation of adenosine A1 receptors (A1Rs) induces AMPA receptor (AMPAR) internalization in rat hippocampus. This study investigated whether aging-related changes in the rat hippocampus include altered surface expression of adenosine A1 and A2A receptors, and whether these changes correspond to changes in AMPAR surface expression and altered synaptic plasticity. We found reduced A1R surface expression in middle-aged rat hippocampus, and also reduced GluA1 and GluA2 AMPAR subunit surface expression. Using a chemically-induced LTP (cLTP) experimental protocol, we recorded fEPSPs in young (1 month old) and middle-aged (7–12 month old) rat hippocampal slices. There were significant impairments in cLTP in middle-aged slices, suggesting impaired synaptic plasticity. Since we previously showed that the A1R agonist N6-cyclopentyladenosine (CPA) reduced both A1Rs and GluA2/GluA1 AMPARs, we hypothesized that the observed impaired synaptic plasticity in middle-aged brains is regulated by A1R-mediated AMPAR internalization by clathrin-mediated endocytosis. Following cLTP, we found a significant increase in GluA1 and GluA2 surface expression in young rats, which was blunted in middle-aged brains or in young brains pretreated with CPA. Blocking A1Rs with 8-cyclopentyl-1,3-dipropylxanthine or AMPAR endocytosis with either Tat-GluA2-3Y peptide or dynasore (dynamin inhibitor) similarly enhanced AMPAR surface expression following cLTP. These data suggest that age-dependent alteration in adenosine receptor expression contributes to increased AMPAR endocytosis and impaired synaptic plasticity in aged brains.  相似文献   

18.
19.
Oligomerization of the mannose 6-phosphate/insulin-like growth factor?II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.  相似文献   

20.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号