首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

2.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

3.
Upon incubation with human leukocytes, [1-14C] linoleic acid is almost exclusively transformed into 13-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) if the linoleic acid concentration is lower than 50 microM. Identification of 13-HODE was done by GLC-MS at the level of its methyl ester, trimethylsilyl ether and by comparison with authentic 13-HODE in two different HPLC systems. Analysis of the products by chiral phase HPLC shows that 13(S)-hydroxy-9Z, 11E-octadecadienoic acid is by far the major metabolite formed by human leukocytes. Comparison of reactions performed with intact or lyzed cells suggests that the formation of 13(S)-HODE by human leukocytes occurs in two steps, a dioxygenation catalyzed by a 15-lipoxygenase and a reduction of intermediate 13-HPODE by a glutathione-dependent peroxidase.  相似文献   

4.
The synthesis of leukotriene B(4) from arachidonic acid requires the sequential action of two enzymes: 5-lipoxygenase and leukotriene A(4) hydrolase. 5-Lipoxygenase is known to be present in the cytoplasm of some leukocytes and able to accumulate in the nucleoplasm of others. In this study, we asked if leukotriene A(4) hydrolase co-localizes with 5-lipoxygenase in different types of leukocytes. Examination of rat basophilic leukemia cells by both immunocytochemistry and immunofluorescence revealed that leukotriene A(4) hydrolase, like 5-lipoxygenase, was most abundant in the nucleus, with only minor occurrences in the cytoplasm. The finding of abundant leukotriene A(4) hydrolase in the soluble nuclear fraction was substantiated by two different cell fractionation techniques. Leukotriene A(4) hydrolase was also found to accumulate together with 5-lipoxygenase in the nucleus of alveolar macrophages. This result was obtained using both in situ and ex vivo techniques. In contrast to these results, peripheral blood neutrophils contained both leukotriene A(4) hydrolase and 5-lipoxygenase exclusively in the cytoplasm. After adherence of neutrophils, 5-lipoxygenase was rapidly imported into the nucleus, whereas leukotriene A(4) hydrolase remained cytosolic. Similarly, 5-lipoxygenase was localized in the nucleus of neutrophils recruited into inflamed appendix tissue, whereas leukotriene A(4) hydrolase remained cytosolic. These results demonstrate for the first time that leukotriene A(4) hydrolase can be accumulated in the nucleus, where it co-localizes with 5-lipoxygenase. As with 5-lipoxygenase, the subcellular distribution of leukotriene A(4) hydrolase is cell-specific and dynamic, but differences in the mechanisms regulating nuclear import must exist. The degree to which these two enzymes are co-localized may influence their metabolic coupling in the conversion of arachidonic acid to leukotriene B(4).  相似文献   

5.
The enzyme responsible for 15-lipoxygenation of arachidonic acid was purified to homogeneity from human eosinophil-enriched leukocytes using a combination of ammonium sulfate precipitation, hydrophobic interaction chromatography, and high pressure liquid chromatography on hydroxyapatite and cation-exchange columns. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein revealed a single major band (apparent Mr 70,000). Amino acid sequence analysis yielded a single N-terminal sequence. Comparison of the N-terminal 15 residues reveals 71% sequence identity to the rabbit reticulocyte lipoxygenase and 36% sequence identity to the rat basophilic leukemia 5-lipoxygenase. In contrast, sequence identity to the soybean lipoxygenase-1 is not observed. These results demonstrate that human 15-lipoxygenase can be isolated from eosinophil-enriched leukocytes and is accessible for direct sequence analysis. Furthermore, we present initial evidence that the mammalian lipoxygenases constitute an homologous family of enzymes. The availability of homogeneous human 15-lipoxygenase will play a key role in elucidating other relationships in this family of enzymes.  相似文献   

6.
A simple and efficient method for preparing 11,12-leukotriene A4 has been established by the stereospecific biomimetic route from arachidonic acid. 12S-Hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid was synthesized using a partially purified 12-lipoxygenase of porcine leukocytes. The methyl ester of the compound was then chemically converted to two labile epoxides with a conjugated triene structure. These compounds were identified by proton NMR and mass spectrometry to be 11S,12S-oxido-5Z,7E,9E,14Z-eicosatetraenoic acid (11,12-leukotriene A4) and its geometric isomer.  相似文献   

7.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

8.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

9.
Purified recombinant human 5-lipoxygenase was used to investigate the catalytic properties of the protein in the presence and absence of leukocyte stimulatory factors. Recombinant human 5-lipoxygenase was purified to apparent homogeneity (95-99%) from a high expression baculovirus system by chromatography on ATP-agarose with a yield of 0.6 mg of protein per 100 ml of culture (2 x 10(8) cells) and a specific activity of 3-6 mumol of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) per mg of protein in the presence of ATP, Ca2+, and phosphatidylcholine as the only factors. In the absence of leukocyte factors, the reaction catalyzed by the purified recombinant enzyme showed a half-time of maximal 5-HPETE formation of 0.5-0.7 min and was sensitive to the selective 5-lipoxygenase inhibitors BW755C (IC50 = 13 microM) and L-656,224 (IC50 = 0.8 microM). The reaction products of arachidonic acid oxidation were 5-HPETE and 6-trans- and 12-epi-6-trans-leukotriene B4, the nonenzymatic hydrolysis products of leukotriene A4 (LTA4), indicating that the purified protein expressed both the 5-oxygenase and leukotriene A4 synthase activities (ratio 6:1). The microsomal fraction and the 60-90% ammonium sulfate precipitate fraction from sonicated human leukocytes did not increase product formation by the isolated enzyme when assayed in the presence of ATP, Ca2+, and phosphatidylcholine. These factors were found to stabilize 5-lipoxygenase during preincubation of the enzyme at 37 degrees C with the assay mixture but they failed to stimulate enzymatic activity when added at the end of the preincubation period. The results demonstrate that human 5-lipoxygenase can be isolated in a catalytically active form and that protein factors from leukocytes protect against enzyme inactivation but are not essential for enzyme activity.  相似文献   

10.
15-Hydroperoxy[1-14C]eicosapentaenoic acid derived from eicosapentaenoic acid (EPA) was incubated with suspensions of porcine leukocytes. Incubation with porcine leukocytes resulted in the formation of seven dihydroxy compounds, one monohydroxy and one hydroxyepoxy compound. After separation by reverse-phase and straight-phase HPLC, GC/MS analysis revealed that these metabolites were four isomers of 8,15-diHEPEs, two isomers of 14,15-diHEPEs, one isomer of 5,15-diHEPE, 15-HEPE and an epoxyalcohol: 13-hydroxy-14,15-epoxyeicosatetraenoic acid. In addition to the above metabolites, two trihydroxytetraene derivatives were also isolated. GC/MS and ultraviolet spectroscopy identified the two trihydroxypentaene derivatives as 5,6,15-trihydroxy-7,9,11,13,17-eicosapentaenoic acid (lipoxin A5) and 5,14,15-trihydroxy-6,8,10,12,17-eicosapentaenoic acid (lipoxin B5). This study demonstrated that the 15-hydroperoxide of EPA can be actively converted to various hydroxylated products via the 5-, 12- and 15-lipoxygenase as well as epoxyisomerase pathways in the porcine leukocytes.  相似文献   

11.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

12.
Incubation of human eosinophils with arachidonic acid led to the formation of a novel and potent eosinophil chemotactic lipid (ECL) (Morita, E., Schr?der, J.-M., and Christophers, E. (1990) J. Immunol. 144, 1893-1900). To test the working hypothesis of whether ECL could have been formed via eosinophil-arachidonic acid 15-lipoxygenase we investigated whether other arachidonic acid 15-lipoxygenases such as soybean lipoxygenase I catalyze formation of a similar ECL. In the presence of hemoproteins and soybean lipoxygenase I arachidonic acid is converted to an ECL, which has physicochemical properties similar to those found for the eosinophil-derived ECL. Purification of this ECL by high performance liquid chromatography revealed that ECL is structurally different from well known eosinophil chemotactic eicosanoids such as leukotriene B4, 5,15-(6E,8Z,11Z,13E)-dihydroxyeicosatetraenoic acid (5,15-diHETE), and (8S,15S)-(5Z,9E,11Z,13E)-dihydroxyeicosatetra eno ic acid ((8S,15S)-diHETE). UV spectra of this ECL with absorbance maxima at 230 and 278 nm revealed the presence of two independent chromophores such as a conjugated oxodiene and a conjugated diene. Catalytic hydrogenation of ECL methyl ester led to the formation of 5,15-dihydroxyarachidic acid methyl ester. Reduction of ECL with sodium borohydride produced a product which is identical with authentic (5S,15S)-(6E,8Z,11Z,13E)-diHETE. Formation of an ECL monomethoxime derivative supports the conclusion that this highly potent eosinophil chemotactic eicosanoid is structurally identical with 5-oxo-15-hydroxy-6,8,11,13-eicosatetraenoic acid.  相似文献   

13.
Arachidonate 15-lipoxygenase was purified from human eosinophil-enriched leukocytes after showing that 15-lipoxygenase activity was 100-fold greater in eosinophils than in neutrophils. Partial purification was achieved using ammonium sulfate precipitation, cation-exchange and hydrophobic-interaction chromatography. New evidence is presented suggesting that 15-lipoxygenase has electrostatic and hydrophobic properties distinct from 5-lipoxygenase. In addition, ATP is shown to inhibit, and phosphatidylcholine is shown to stimulate, 15-lipoxygenase, suggesting a regulatory role for these compounds in the lipoxygenation of arachidonic acid.  相似文献   

14.
Inhibition of leukotriene biosynthesis by acetylenic analogs   总被引:2,自引:0,他引:2  
The monoacetylenic acid, 5,6-dehydroarachidonic acid (5,6-DHA), inhibits the 5-lipoxygenase in RBL-1 extracts in a time-dependent irreversible manner. In intact cell systems, 5,6-DHA is not as effective as ETYA or 15(S)-HEYA in inhibiting the 5-lipoxygenase activities, because 5,6-DHA is metabolized into triglycerides, phospholipids and hydroxylated products. While lipoxygenation of arachidonic acid at C-5 and C-12 is inhibited by 15-HETE, the transformation of arachidonic acid into 5,15-diHETE via 15-HPETE in human leukocytes is relatively insensitive to 15-HETE.  相似文献   

15.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

16.
Human keratinocytes isolated from neonatal skin express 15-lipoxygenase activity at a level far greater than that of any of the other pathways for lipoxygenation of arachidonic acid. The 10,000 x g supernatant of sonicates of 10(6) keratinocytes generates 15-hydroxy-eicosatetraenoic acid from 5 micrograms/ml of arachidonic acid at a mean maximum rate of 38 ng/30 min at 37 degrees C, that is similar to the activity of the 15-lipoxygenase of human airway epithelial cells and greater than that of endothelial cells and leukocytes. The unique mediators derived from the 15-lipoxygenation of arachidonic acid, that stimulate secretion and exert hyperalgesic effects, may achieve a concentration in skin sufficient to regulate local cellular and neural functions.  相似文献   

17.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

18.
CGS 8515 inhibited 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 synthesis in guinea pig leukocytes (IC50 = 0.1 microM). The compound did not appreciably affect cyclooxygenase (sheep seminal vesicles), 12-lipoxygenase (human platelets), 15-lipoxygenase (human leukocytes) and thromboxane synthetase (human platelets) at concentrations up to 100 microM. CGS 8515 inhibited A23187-induced formation of leukotriene products in whole blood (IC50 values of 0.8 and 4 microM, respectively, for human and rat) and in isolated rat lung (IC50 less than 1 microM) in vitro. The selectivity of the compound as a 5-lipoxygenase inhibitor was confirmed in rat whole blood by the 20-70-fold separation of inhibitory effects on the formation of leukotriene from prostaglandin products. Ex vivo and in vivo studies with rats showed that CGS 8515, at an oral dose of 2-50 mg/kg, significantly inhibited A23187-induced production of leukotrienes in whole blood and in the lung. The effect persisted for at least 6 h in the ex vivo whole blood model. CGS 8515, at oral doses as low as 5 mg/kg, significantly suppressed exudate volume and leukocyte migration in the carrageenan-induced pleurisy and sponge models in the rat. Inhibitory effects of the compound on inflammatory responses and leukotriene production in leukocytes and target organs are important parameters suggestive of its therapeutic potential in asthma, psoriasis and inflammatory conditions.  相似文献   

19.
Addition of tracer (pg) amounts of [3H]arachidonic acid to the 120,000 x g cytosolic fraction of human polymorphonuclear leukocytes (PMNs) produced [3H]-15-HETE, the product of the 15-lipoxygenase, as the major metabolite. In the presence of nanomolar and low micromolar amounts of calcium, [3H]-15-HETE formation was increased as much as 15-fold which corresponded to 17% conversion of added substrate. This enhancement of the cytosolic 15-lipoxygenase activity, which was reversible by EGTA, was inhibited by phosphatidyl serine and phosphatidyl choline. Millimolar levels of calcium inhibited the cytosolic 15-lipoxygenase and the 5-lipoxygenase product 5-HETE could reverse this inhibition. These results indicate that calcium is an important modulator of the PMN 15-lipoxygenase when the enzyme is in a cytosolic milieu.  相似文献   

20.
Using a partially purified 12-lipoxygenase from porcine leukocytes, (5Z,8Z,10E,14Z)-12-hydroperoxy-5,8,10,14-icosate traenoic acid was synthesized from arachidonic acid with a yield of over 35%. The absolute configuration of C-12 was determined as S by chiral-phase column chromatography. It was chemically converted to at least three epoxides with the conjugated triene structure. Two were identified by proton NMR and mass spectrometry to be (5Z,7E,9E,14Z)-(11S,12S)-11,12-oxido-5,7,9,14-ic osatetraenoic acid (11,12-leukotriene A4) and (5Z,7Z,9E,14Z)-(11S,12S)-11,12-oxido-5,7,9,14-ic osatetraenoic acid (7-cis-11,12-leukotriene A4). 11,12-Leukotriene A4 underwent acid hydrolysis to yield two diastereomers of (6E,8E,10E,14Z)-(12S)-5,12-dihydroxy-6,8,10,14-i cosatetraenoic acid and two isomers of (14Z)-(12S)-11,12-dihydroxy-5,7,9,14-icosatetraenoic acid. Upon incubation with rat liver glutathione S-transferase, 11,12-leukotriene A4 was converted to 11,12-leukotriene C4, a spasmogenic compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号