首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

3.
Derivatives with scaffolds of 1,3,5-tri-substituted pyrazoline and 1,3,4,5-tetra-substituted pyrazoline were synthesized and tested for their inhibitory effects versus the p53+/+ HCT116 and p53?/? H1299 human tumor cell lines. Several compounds were active against the two cell lines displaying IC50 values in the low micromolar range with a clearly more pronounced effect on the p53+/+ HCT116 cells. The compound class shows excellent developability due to the modular synthesis, allowing independent optimization of all three to four key substituents to improve the properties of the molecules.  相似文献   

4.
Identifying effective small molecules that specifically target the p53 pathway in cancer has been an exciting, though challenging, approach for the development of anti-cancer therapy. We recently identified Inauhzin (INZ) as a novel p53 activator, selectively and efficiently suppressing tumor growth without displaying genotoxicity and with little toxicity to normal cells. In order to reveal the structural features essential for anti-cancer activity of this small molecule, we have synthesized a panel of INZ analogs and evaluated their ability to induce cellular p53 and to inhibit cell growth in cell-based assays. This study as described here leads to the discovery of INZ analog 37 that displays much better potency than INZ in both of p53 activation and cell growth inhibition in several human cancer cell lines including H460 and HCT116+/+ cells. This INZ analog exhibited much less effect on p53-null H1299 cells and HCT116−/− cells, and importantly no toxicity on normal human p53-containing WI-38 cells. Hence, our results not only unveil key chemical features for INZ activity, but also identify the newly synthesized INZ analog 37 as a better small molecule for further development of anti-cancer therapy.  相似文献   

5.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

6.
The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death.  相似文献   

7.
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.  相似文献   

8.

Background

The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells.

Principal Findings

For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells.

Conclusions

Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals.  相似文献   

9.
10.
11.
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53+/+ cells but increased it in HCT116 p53−/− cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.  相似文献   

12.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

13.
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.  相似文献   

14.
The present study addressed whether the combination of metformin and ionizing radiation (IR) would show enhanced antitumor effects in radioresistant p53-deficient colorectal cancer cells, focusing on repair pathways for IR-induced DNA damage. Metformin caused a higher reduction in clonogenic survival as well as greater radiosensitization and inhibition of tumor growth of p53-/- than of p53+/+ colorectal cancer cells and xenografts. Metformin combined with IR induced accumulation of tumor cells in the G2/M phase and delayed the repair of IR-induced DNA damage. In addition, this combination significantly decreased levels of p53-related homologous recombination (HR) repair compared with IR alone, especially in p53-/- colorectal cancer cells and tumors. In conclusion, metformin enhanced radiosensitivity by inducing G2/M arrest and reducing the expression of DNA repair proteins even in radioresistant HCT116 p53-/- colorectal cancer cells and tumors. Our study provides a scientific rationale for the clinical use of metformin as a radiosensitizer in patients with p53-deficient colorectal tumors, which are often resistant to radiotherapy.  相似文献   

15.
We have used a lentiviral vector to stably express p53 at a physiological level in p53 knockout HCT116 cells. Cells transduced with wild type p53 responded to genotoxic stress by stabilizing p53 and expressing p53 target genes. The reconstituted cells underwent G(1) arrest or apoptosis appropriately depending on the type of stress, albeit less efficiently than parental wild type cells. Compared with cells expressing exogenous wild type p53, the apoptotic response to 5-fluorouracil (5FU) was >50% reduced in cells expressing S15A or S20A mutant p53, and even more reduced by combined mutation of serines 6, 9, 15, 20, 33, and 37 (N6A). Among a panel of p53 target genes tested by quantitative PCR, the gene showing the largest defect in induction by 5FU was BBC3 (PUMA), which was induced 4-fold by wild type p53 and 2-fold by the N6A mutant. Mutation of N-terminal phosphorylation sites did not prevent p53 stabilization by doxorubicin or 5FU. MDM2 silencing by RNA interference activated p53 target gene expression in normal fibroblasts but not in HCT116 cells, and exogenous p53 could be stabilized in HCT116 knockout cells despite combined mutation of p53 phosphorylation sites and silencing of MDM2 expression. The MDM2 feedback loop is thus defective, and other mechanisms must exist to regulate p53 stability and function in this widely used tumor cell line.  相似文献   

16.

Background and Purpose

To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.

Materials and Methods

DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.

Results

The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation.

Conclusions

Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.  相似文献   

17.
The present study was designed to investigate the anticancer activity of novel nine small peptides (compounds 19) derived from TT-232, a somatostatin structural analogue, by analyzing the inhibition of mammalian DNA polymerase (pol) and human cancer cell growth. Among the compounds tested, compounds 3 [tert-butyloxycarbonyl (Boc)-Tyr-Phe-1-naphthylamide], 4 (Boc-Tyr-Ile-1-naphthylamide), 5 (Boc-Tyr-Leu-1-naphthylamide) and 6 (Boc-Tyr-Val-1-naphthylamide) containing tyrosine (Tyr) but no carboxyl groups, selectively inhibited the activity of rat pol β, which is a DNA repair-related pol. Compounds 36 strongly inhibited the growth of human colon carcinoma HCT116 p53+/+ cells. The influence of compounds 19 on HCT116 p53?/? cell growth was similar to that observed for HCT116 p53+/+ cells. These results suggest that the cancer cell growth suppression induced by these compounds might be related to their inhibition of pol. Compound 4 was the strongest inhibitor of pol β and cancer cell growth among the nine compounds tested. This compound specifically inhibited rat pol β activity, but had no effect on the other 10 mammalian pols investigated. Compound 4 combined with methyl methane sulfonate (MMS) treatment synergistically suppressed HCT116 p53?/? cell growth compared with MMS alone. This compound also induced apoptosis in HCT116 cells with or without p53. From these results, the influence of compound 4, a specific pol β inhibitor, on the relationship between DNA repair and cancer cell growth is discussed.  相似文献   

18.
A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.  相似文献   

19.
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression.  相似文献   

20.
Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by β + and β ? emission, allowing positron emission tomography and targeted radionuclide therapy for cancer. Because the delivery of 64Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast cells, positive and negative for Atox1, were used to determine the role of Atox1 in 64Cu transport to the nucleus. Mouse embryonic fibroblast Atox1+/+ cells accumulated more 64Cu in the nucleus than did Atox1?/? cells. HCT 116 colorectal cancer cells expressing p53 (+/+) and not expressing p53 (?/?) were used to evaluate the role of this tumor suppressor protein in 64Cu transport. In cells treated with cisplatin, the uptake of 64Cu in the nucleus of HCT 116 p53+/+ cells was greater than that in HCT 116 p53?/? cells. Atox1 expression increased in HCT 116 p53+/+ and p53?/? cells treated with cisplatin; however, Atox1 localized to the nuclei of p53+/+ cells more than in the p53?/? cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisplatin affects nuclear transport of 64Cu in HCT 116 cells by upregulating the expression and the nuclear localization of Atox1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号