首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HSPA1A (HSP70-1) is a highly inducible heat shock gene up-regulated in response to environmental stresses and pollutants. The aim of our study was to evaluate the sensitivity of the stable metabolically competent HepG2 cells containing a human HSPA1A promoter-driven luciferase reporter (HepG2-luciferase cells) for assessing the toxicity of organic pollutants present in air. The HepG2-luciferase cells were validated by heat shock treatment and testing three organic compounds (pyrene, benzo[a]pyrene, and formaldehyde) that are ubiquitous in the air. The maximal level of HSPA1A (HSP70-1) and relative luciferase activity induced by heat shock were over three and nine times the control level, respectively. Pyrene, benzo[a]pyrene, and formaldehyde all induced significantly elevated levels of relative luciferase activity in a dose-dependent manner. Extractable organic matter (EOM) from urban traffic and coke oven emissions in ambient air were tested on the HepG2-luciferase cells. The traffic EOM induced significant increase in relative luciferase activity at concentrations of picogram per liter. The coke oven EOM produced a strong dose-dependent induction of relative luciferase activity up to six times the control value. Significant increases in relative luciferase activity were observed at concentrations that were as low, or lower than the concentrations that the tested organic pollutants decreased cell viability, and increased malondialdehyde concentration, Olive tail moment, and micronuclei frequency. Therefore, we conclude that the HepG2-luciferase cells are a valuable tool for rapid screening of the overall toxicity of organic pollutants present in air.  相似文献   

2.
The proteasome inhibitor bortezomib (Velcade) is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1Ahigh) cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1Alow) cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1) to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1Alow cell lines (UM-UC10 and UM-UC13), and exposure to the chromatin demethylating agent 5-aza-2′-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B–V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.  相似文献   

3.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   

4.
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B′) and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.  相似文献   

5.
Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (polyglutamine)-expanded Huntingtin fragment. Overexpressed chaperones that suppressed polyQ aggregation were found not to be able to stimulate luciferase refolding. Inversely, chaperones that supported luciferase refolding were poor suppressors of polyQ aggregation. This was not related to client specificity itself, as the polyQ aggregation inhibitors often also suppressed heat-induced aggregation of luciferase. Surprisingly, the exclusively heat-inducible HSPA6 lacks both luciferase refolding and polyQ aggregation-suppressing activities. Furthermore, whereas overexpression of HSPA1A protected cells from heat-induced cell death, overexpression of HSPA6 did not. Inversely, siRNA (small interfering RNA)-mediated blocking of HSPA6 did not impair the development of heat-induced thermotolerance. Yet, HSPA6 has a functional substrate-binding domain and possesses intrinsic ATPase activity that is as high as that of the canonical HSPA1A when stimulated by J-proteins. In vitro data suggest that this may be relevant to substrate specificity, as purified HSPA6 could not chaperone heat-unfolded luciferase but was able to assist in reactivation of heat-unfolded p53. So, even within the highly sequence-conserved HSPA family, functional differentiation is larger than expected, with HSPA6 being an extreme example that may have evolved to maintain specific critical functions under conditions of severe stress.  相似文献   

6.
7.
One unique to detect cytotoxicity is to utilize reporter gene assays for promoters that respond to stress-induced effects. In the present study, we discovered that the DNA sequence from nt -287 to +110 of the heat shock protein 70B' (HSP70B') gene could be used as a functional promoter to detect cytotoxicity of cadmium chloride. We thus detected cytotoxicity induced by cadmium chloride with the luciferase assay using this functional HSP70B' promoter, as well as the cell viability test based on the quantification of intracellular ATP. The luciferase assay using the functional HSP70B' promoter resulted in nearly maximal luciferase activity after only 12 h of exposure to cadmium chloride, however, with intracellular ATP quantification, the decrease in cell viability only reached a plateau after 24 h of exposure. Cytotoxicity detection limits for cadmium chloride with the functional HSP70B' promoter assay or cell viability based on ATP quantification were 130 ng/mL and 530 ng/mL, respectively. Our results therefore suggest that the novel reporter gene assay using a functional region of the HSP70B' promoter has significant advantages for the detection of cytotoxicity in terms of both speed and sensitivity, when compared to the cell viability test based on ATP quantification.  相似文献   

8.
9.
Induction ofHSP70 heat shock genes by light has been demonstrated inChlamydomonas. Our aim was to establish whether this induction by light is mediated by the heat stress sensing pathway or by an independent signal chain. Inhibitors of cytoplasmic protein synthesis revealed an initial difference. Cycloheximide and other inhibitors of protein synthesis preventedHSP70A induction upon illumination but not during heat stress. Analysis ofHSP70A induction in cells that had differentiated into gametes revealed a second difference. While heat shock resulted in elevatedHSP70A mRNA levels, light was no longer able to serve as an inducer in gametes. To identify the regulatory sequences that mediate the response of theHSP70A gene to either heat stress or light we introduced a series of progressive 5′ truncations into its promoter sequence. Analyses of the levels of mRNA transcribed from these deletion constructs showed that in most of them the responses to heat shock and light were similar, suggesting that light induction is mediated by a light-activated heat shock factor. However, we show that theHSP70A promoter also containscis-acting sequences involved in light induction that do not participate in induction by heat stress. Together, these results provide evidence for a regulation ofHSP70A gene expression by light through a heat shock-independent signal pathway.  相似文献   

10.
11.
Heat shock proteins (HSPs) are a family of cellular proteins involved in a variety of biological functions including chaperone activity. HSPs are classified based on their molecular weight and each family has several isoforms in eukaryotes. HSP40 is the most diverse family acting as a co-chaperone for the highly conserved HSP70 family. Some of the isoforms are reported to be induced during heat stress. Few studies have also highlighted the diverse role of some isoforms in different stress conditions including viral infections. But till date, no study has comprehensively examined the expression profile of different HSP40 and 70 isoforms in either heat stress or HIV-1 infection, a virus that is responsible for the pandemic of AIDS. In the present study, we have compared the mRNA expression profile of HSP40 and HSP70 isoforms during heat stress and HIV-1 infection in a T-cell line and also validated the HIV-1 stress results in peripheral blood mononuclear cells. In case of HSP70, we observed that three isoforms (HSPA1A, HSPA1B, and HSPA6) are highly upregulated during heat stress, but these isoforms were found to be downregulated during the peak of HIV-1 infection. While in case of HSP40, we found that only DNAJA4, DNAJB1, and DNAJB4 showed significant upregulation during heat stress, whereas in HIV-1 infection, majority of the isoforms were induced significantly. Stress-dependent differential expression observed here indicates that different HSP40 and HSP70 isoforms may have specific roles during HIV-1 infection and thus could be important for future studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01185-y.  相似文献   

12.
Heat shock proteins (HSPs) are known as molecular chaperones, and they function in response to cell stress. HSPA13, also called STCH, is a member of the HSP70 family. In general, HSP70 family may play a protective role in prion diseases. In a recent study, the overexpression of HSPA13 was shown to shorten the incubation time of prion diseases. Although the exact role of HSPA13 in the pathogenesis of prion diseases remains unknown, the expression level of HSPA13 is significantly associated with the latent phase of prion diseases. It has been known that single nucleotide polymorphisms (SNPs) in promoter and open reading frame (ORF) region of genes can affect either gene expression or gene function. The purpose of this study was to investigate genotype and allele frequencies of SNPs found in the promoter and ORF of HSPA13 in healthy Korean population to obtain the information for subsequent population genetics and prion diseases studies. We observed four SNPs in the promoter region of HSPA13, of which two have previous identified (c.-608C>G; rs2242662 and c.-381G>A; rs2242661) and two are novel (c.-321C>T and c.-300A>G). Interestingly, we did not observe any polymorphisms in the ORF of this gene. To our knowledge, this is the first study of polymorphisms in the human HSPA13 gene.  相似文献   

13.
The present studies were conducted to investigate the difference response of dermal fibroblasts to heat stress in Tharparkar and Karan-Fries cattle. Skin is the most important environmental interface providing a protective envelope to animals. In skin, dermal fibroblasts are the most regular cell constituent of dermis that is crucial for temperature homeostasis. The study aimed to examine the reactive oxygen species (ROS) formation, cytotoxicity (%) and heat shock protein 70 (HSP70) genes expression in dermal fibroblast of Tharparkar and Karan-Fries cattle and to assess whether resistance of dermal fibroblast to heat stress is breed specific. Dermal fibroblasts from ear pinna of Tharparkar and Karan-Fries cattle were exposed at 25 °C, 37 °C, 40 °C and 44 °C for 3 h to measure the ROS, cytotoxicity (%) and HSP 70 (HSPA1A, HSPA2 and HSPA8) genes’ expression. The results showed that ROS formation at low temperature (25 °C) decreased in both breeds as compared to control (37 °C) and the differences were significant (P<0.0001). Heat stress at 40 °C did not increase ROS formation significantly in Tharparkar but increased significantly (P<0.001) in Karan-Fries cattle. The overall cytotoxicity (%) was also found to be significantly different (P<0.001) between Tharparkar and Karan-Fries cattle, and on exposure to different temperatures (P<0.001). The cytotoxicity (%) in dermal fibroblast cells of Karan-fries cows was more than Tharparkar. The expression studies indicated that all HSP70 genes (HSPA8, HSPA1A and HSPA2) were up-regulated at different temperatures in both breeds. In Tharparkar, the relative mRNA expression of HSPA8 gene was higher but HSPA1A and HSPA2 genes were low as compared to Karan-Fries cattle. At 40 and 44 °C, the relative expressions of inducible HSP 70 genes (HSPA1A and HSPA2) were higher in Karan-Fries than Tharparkar. In summary, dermal fibroblast resistance to heat shock differed between breeds. Dermal fibroblasts of Tharparkar were observed to be more heat tolerant than crossbred Karan-Fries cattle. The study concludes that zebu cattle (Tharparkar) dermal fibroblasts are more adapted to tropical climatic condition than crossbreed cattle (Karan-Fries). Differences exist in dermal fibroblasts of heat adapted and non-adapted cattle.  相似文献   

14.
The heat shock protein 70 (HSP70) gene family plays a key role in protecting plant cells or tissues from thermal or oxidative stress. Although many studies have elucidated the molecular functions of individual family members, genome-wide analysis of this family is still limited, especially for crop species. Our objective was to integrate various meta-profiling data into the context of a phylogenetic tree, which would enable us to perform fine evaluation of functional dominancy or redundancy within this family. Our data indicated that a loss-of-function mutant of a rice cytosolic HSP70 gene (OsctHSP70-1) did not show a clear defective phenotype in response to high temperature because of the existence of another gene family member that was closely clustered with OsctHSP70-1 and had similar expression patterns. Moreover, the second gene showed much stronger anatomical expression. We indirectly analyzed the function of OsctHSP70-1 by studying GUS activity under the control of the endogenous promoter. We also designed a probable interaction network mediated by OsctHSP70-1 and used co-expression analysis among its components to refine the network, suggesting more probable model to explain the function of OsctHSP70-1.  相似文献   

15.
Age-dependent changes in heat shock response (HSR) were studied in mononuclear cells (monocytes and lymphocytes) collected from young (mean age = 22.6 ± 1.7 years) and middle-aged (mean age = 56.3 ± 4.7 years) subjects after 1 hour of heat shock at 42°C. Genotype-specific HSR was measured by genotyping the subjects for 3 single nucleotide polymorphisms, HSPA1A(A-110C), HSPA1B(A1267G), and HSPA1L(T2437C), 1 each in the 3 HSP70 genes. A significant age-related decrease in the induction of Hsp70 occurred after heat shock in both monocytes and lymphocytes. The noninducible and inducible forms of Hsp70 decreased 1.3-fold (P < 0.001) and 1.4-fold (P < 0.001), respectively, in the monocytes with age. In the young subjects, a positive association was found between HSPA1L(T2437C) polymorphism and HSR. CC carriers had a significantly lower induction than TT carriers in both monocytes (P = 0.015) and lymphocytes (P = 0.044). This polymorphism, which is present in the coding region of HSPA1L gene, can affect the chaperoning function of Hsp70. These data consolidate our other observations that the CC genotype is unfavorable for human longevity and provide a functional explanation in terms of variations in HSR.  相似文献   

16.
HSP70 genes have been considered as promising schizophrenia candidate genes based on their protective role in the central nervous system under stress conditions. In this study, we analyzed the potential implication of HSPA1A +190G/C, HSPA1B +1267A/G, and HSPA1L +2437T/C polymorphisms in the susceptibility to paranoid schizophrenia in a homogenous Caucasian Polish population. In addition, we investigated the association of the polymorphisms with the clinical variables of the disease. Two hundred and three patients with paranoid schizophrenia and 243 healthy controls were enrolled in the study. Polymorphisms of HSPA1A, -1B, and -1L genes were genotyped using the PCR-RFLP technique. Analyses were conducted in entire groups and in subgroups that were stratified according to gender. There were significant differences in the genotype and allele frequencies of HSPA1A polymorphism between the patients and controls. The +190CC genotype and +190C allele were over-represented in the patients and significantly increased the risk for developing schizophrenia (OR = 3.45 and OR = 1.61, respectively). Interestingly, such a risk was higher for females with the +190CC genotype than for males with the +190CC genotype (OR = 5.78 vs. OR = 2.76). We also identified the CGT haplotype as a risk haplotype for schizophrenia and demonstrated the effects of HSPA1A and HSPA1B genotypes on the psychopathology and age of onset. Our study provided the first evidence that the HSPA1A polymorphism may potentially increase the risk of developing paranoid schizophrenia. Further independent analyses in different populations to evaluate the role of gender are needed to replicate these results.  相似文献   

17.
18.
19.

Background

There is ample evidence that Hsp70 takes part in the progress of coronary heart disease (CHD). This implies that genetic variants of Hsp70 genes such as HSPA8 (HSC70) gene might contribute to the development of CHD. The present study aimed to investigate whether certain genetic variants of HSPA8 gene are associated with CHD in Han Chinese people.

Methodology/Principal Findings

A total of 2006 subjects (1003 CHD cases and 1003 age- and sex- matched healthy controls) were recruited. Genetic variants in the HSPA8 gene were identified by sequencing of the gene in 60 unrelated Chinese. Four tag single nucleotide polymorphisms (tagSNPs) (rs2236659, rs2276077, rs10892958, and rs1461496) were selected and genotyped. The function of the significant SNP was evaluated using luciferase reporter assays in two cell lines. By sequencing the promoter and all exons and introns of the HSPA8 gene, 23 genetic variants were identified. One promoter SNP rs2236659 was associated with susceptibility to CHD. Carriers of the “C” allele of rs2236659 had decreased CHD risk with odds ratio (OR) of 0.78 (95% CI: 0.62, 0.98; P = 0.033) after adjustment for conventional risk factors. Haplotype analyses indicated that haplotype GCGC contributed to a lower CHD risk (OR = 0.78, 95% CI: 0.65, 0.93; P = 0.006) compared with the common haplotype AGGT. In a transfection assay, the C allele of rs2236659 showed a 37–40% increase in luciferase expression of the reporter gene luciferase in endothelial and non-endothelial cells compared with the T allele.

Conclusions/Significance

These findings suggest that genetic variants in HSPA8 gene (especially promoter SNP rs2236659) contribute to the CHD susceptibility by affecting its expression level.  相似文献   

20.
Heitzer M  Zschoernig B 《BioTechniques》2007,43(3):324, 326, 328 passim
The successful expression of foreign genes mainly depends on both a reliable method for transformation and a suitable promoter sequence. We created a series of modular plasmids that facilitate the rapid construction of large tandem vectors for transgene expression under the control of different promoter sequences in Chlamydomonas reinhardtii. Tandem vectors carrying expression cassettes for Renilla luciferase and a metabolic selection marker (ARG7) were manufactured by fusing two plasmids in vitro using Cre/lox site-specific recombination. Supercoiled and linear plasmids were used to transform an arginine auxotrophic Chlamydomonas strain, and rates of co-expression as well as levels of luciferase activity were monitored for frequently used promoters (HSP70A, LHCB1, PSAD, and the chimeric HSP70A/RBCS2). Linearized tandem vectors generally increased the co-expression frequency (up to 77%) compared with standard cotransformation protocols. Most transformants showed a single and complete integration event confirming the close linkage of active selectable marker and reporter gene within the nuclear genome. The analysis of luciferase activity showed expression levels within three orders of magnitude for the promoters used, with the artificial HSP70A/RRBCS2 being the most active. For 69% of all luminescent transformants carrying the HSP70A promoter luciferase expression was enhanced by heatshock, indicating physiological promoter function in a transgenic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号