共查询到20条相似文献,搜索用时 0 毫秒
1.
Wood and bark anatomy and histochemistry of Acacia bilimekii Humb. & Bonpl., Acacia cochliacantha Mcbride, Conzatia nultiflora (Rob) Stand. and Guazuma ulmifolia Lam. are described from stem samples collected in a tropical dry forest (Morelos, Mexico). Enzyme activities were tested in tangential, radial and transverse cuts of fresh material. Histochemistry and stem anatomy were studied on similar cuts previously softened in a solution of water-glicerol-PEG. Our results show that the anatomical patterns of bark and wood, as well as the histochemical patterns and specific gravity, are influenced by water accessibility and climate; these patterns could guarantee mechanical and anti-infection strategies to support extreme conditions. Enzyme cytochemistry reveals biochemical activities probably related to lipid utilization routes for the lignification processes and for synthesis of extractives; these results suggest that the formation and maturation of woody tissue is very active at the beginning of the rainy season. These species are widely used by the local population. Traditional uses include firewood, dead and live fences, fodder, construction, supporting stakes, handcrafts, farming tools, extraction of tanning products, and medicine. There is no relationship between use and abundance. Alternative uses are proposed according to a density index. 相似文献
2.
As El Niño is predicted to become stronger and more frequent in the future, it is crucial to understand how El Niño-induced droughts will affect tropical forests. Although many studies have focused on tropical rainforests, there is a paucity of studies on seasonally dry tropical forests (SDTFs), particularly in Asia, and few studies have focused on seedling dynamics, which are expected to be strongly affected by drought. Seedlings in SDTFs are generally more drought-tolerant than those in the rainforests, and the effects of El Niño-induced droughts may differ between SDTF and tropical rainforests. In this study, we explored the impact of El Niño-induced drought at an SDTF in northern Thailand by monitoring the seedling dynamics at monthly intervals for 7 years, including a period of strong El Niño. The effects were compared between two forest types in an SDTF: a deciduous dipterocarp forest (DDF), dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. El Niño-induced drought increased seedling mortality in both the forest types. The effect of drought was stronger in evergreen than in the deciduous species, resulting in higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which compensated for the mortality of seedlings in the DDF. As a result, El Niño increased seedling density in the DDF and decreased it in the LMF. This is the first long-term study to identify the differences in the impacts of El Niño on seedlings between the two forest types, and two leaf habits, evergreen and deciduous, in Southeast Asia. Our findings suggest that future climate change may alter the species composition and spatial distribution of seedlings in Asian SDTFs. 相似文献
3.
The effect of herbivory on survival and growth of seedlings of four species, Cedrela odorata, Hymenaea courbaril, Manilkara chicle and Swietenia macrophylla, was studied in secondary dry forests in Guanacaste, Costa Rica. Potted seedlings were planted at two sites in a 2×2 factorial
design, combining thinning to increase light levels at the forest floor, and trenching to reduce root competition around the
planted seedlings. C. odorata and S. macrophylla were repeatedly severely defoliated by insects, while H. courbaril became less affected. M. chicle did not show any significant signs of defoliation and was not further analysed. Defoliation levels were generally higher
in both thinned and trenched treatments, and also positively correlated with larger initial seedlings sizes. Decreased growth
rates caused by defoliation were seen in S. macrophylla and C. odorata in the growing season. Defoliation of more than 50% in combination with abiotic factors, particularly drought, were sufficient
to contribute to retarded seedling development and increased seedling mortality of C. odorata and S. macrophylla.
Received: 10 April 1997 / Accepted: 26 June 1998 相似文献
4.
Seasonally dry tropical forests (SDTF) currently occupy only 10% of the original area of their natural distribution. In the Marañón river valley, north western of Peru, occurs one of the most important SDTF of the neotropics. It has an endemic woody flora that represent 32% of the species, being threatened by its increasing fragmentation, and the knowledge of the ecology, forestry and conservation of the tree species is scarce. In this context this work presents the result of evaluation of the wood anatomy with emphasis to growth ring analysis, dating trees and stem growth rate determination of four tree species: Anadenanthera colubrina (Vell.) Brenan, Cedrela kuelapensis T.D. Penn. & Daza, Cordia iguaguana Melch. Ex I.M. Johnst., and Esenbeckia cornuta Eng., the last three being endemic and threatened with extinction. Our results determined that Cedrela kuelapensis showed the highest radial growth of the stem in relation to the other congeners of the neotropical region. Lower stem growth was observed for E. cornuta trees, according to the pattern of other tropical species. The results also indicate that populations of C. iguaguana and Esenbeckia cornuta in the zone are mainly composed by young trees exhibiting strong anthropic pressure due to the quality of their timber and, in consequence, more efforts are needed in the management of these resources to guarantee their sustainability. 相似文献
6.
Despite the importance of shredders in organic matter processing in streams, information about the habitat specificities of different taxa is scarce. Herein, we evaluated the habitat preferences of invertebrate shredders in tropical forest streams. A total of 72 leaf patches were sampled in three Atlantic Forest streams (SE Brazil). For each sample, 20 environmental variables were measured, including water properties and characteristics of the leaf patch. We used an Outlying Mean Index analysis to evaluate the niche breadth and overlap of each taxon found as well as habitat preferences. In total, we found 14 shredder taxa in 68 leaf patches, and the gradient of environmental conditions influenced the distribution of most taxa. Considering taxa that occurred in atypical habitats in the study sites, Blaberidae (semiaquatic cockroaches) and Trichodactylus fluviatilis (Decapoda) showed niche segregation, while Macrobrachium potiuna (Decapoda), Tupiperla (Plecoptera), and Nectopsyche (Trichoptera) showed niche overlap. On the other hand, Heterelmis (Coleoptera), Stenochironomus (Diptera), Phylloicus major, and Triplectides gracilis (Trichoptera) occurred in typical habitats. These results showed that shredder taxa had different habitat preferences. The observed differences in niche breadths and habitat specificities among taxa probably result in different leaf processing rates across leaf patches in Atlantic Forest streams. 相似文献
7.
The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing. 相似文献
8.
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although
water availability is clearly one factor determining species distribution, other environmental variables that covary with
rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards
wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites
along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability,
and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites,
the effect of understory light availability on species performance depended strongly on water availability. When water was
not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved
at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light,
presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories
were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution
species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases
in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary
increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species,
possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests. 相似文献
10.
The spread of non-native invasive plants is closely linked to land use changes imposed by human activities such as the expansion of urbanizations and agricultural activities that result in the loss and fragmentation of native forests. While the conditions generated in fragmented forests may provide suitable new habitat for the arrival and establishment of invasive plant propagules, we know little about the reproductive performance of established invasive populations growing in fragmented conditions. We assess sexual reproduction of Ligustrum lucidum in continuous and fragmented forests across 2 years. We also measure soil quality parameters in 1 year to determine their relative influence in shaping its reproduction in both landscape conditions. We observed a strong decrease in reproductive success at the population level in fragmented habitats. However, reproduction at the individual level showed no differences in seed production per tree between landscape conditions, implying no changes in pollination service. Simultaneously, soils of continuous forests had higher water content, total nitrogen, organic matter and carbon. These soil quality parameters were positively correlated with seed production and seedling number per plot within the same year. Thus, reproductive failure in fragmented forests would not be the result of Allee effects but the consequence of less favorable abiotic soil conditions. In current dynamic and changing climatic scenarios imposed by human activities, water and nutrient demanding invasive plants like L. lucidum might be as likely as or even more susceptible to these changes than native ones. Climatic shifts acting in concert with land use changes may either ameliorate invasion spread in abiotically eroded fragmented habitats or boost invasion into novel environments, resulting in new distribution spread patterns. 相似文献
11.
The effects of invasive species on the patch dynamics (establishment, growth, and local extinction) of native species are
not well studied, owing to the need for relatively fine-scale data on the distribution of species. Within the prairie pothole
region of the United States and Canada, the grass, Bromus inermis (smooth brome) has become established by invading disturbed prairies, and through repeated introductions for soil retention
and animal graze. In this study, the impact of smooth brome on the patch dynamics of a dominant native grass species, Spartina pectinata (prairie cordgrass), was assessed using fine-scale (sub-meter) mapping of the distribution of cordgrass and brome in three
prairie fragments from 2000 to 2006. Using GIS spatial analyses, we determined that cordgrass patch growth was two times greater
in areas not invaded by smooth brome versus areas that were heavily infested with smooth brome. Among sites and time periods,
there was a consistent significant negative relationship between the amount of smooth brome surrounding a patch of cordgrass
and the growth of that cordgrass patch. The probability of establishment of a new patch of cordgrass averaged 1.3 times higher
in areas of low brome coverage (<25%) than areas of high brome coverage (>75%). Conversely, existing cordgrass patches were
7.8 times more likely to go extinct in areas of high than low brome coverage. This is one of only a few field studies to provide
evidence of the negative impact of smooth brome on native flora and hopefully will serve as justification for the development
of a formal management plan to limit the distribution of this species in tallgrass prairie ecosystems. 相似文献
12.
We studied the winter foraging niches of tits and related species in deciduous forest fragments varying in size between 1 and 30 ha (plus one forest of 200 ha) in order to investigate the influence of forest fragmentation on foraging niches Very few correlations between niche structure (foraging niche, width and overlap) and forest size or isolation turned out to be significant This implies that either the species that disappear in small fragments are those that suffer most from competition (making the effect unmeasurable), or that competition is relatively unimportant for niche structure In any case we find no evidence that foraging niches are strongly affected by the changes (in habitat and/or community structure) associated with fragmentation 相似文献
13.
Spatial patterns of adult plants are a consequence of several ecological processes related to seed dispersal and recruitment. Dispersal limitation, mediated by dispersal syndrome, is considered a key factor in the formation of adult plant spatial patterns. Although this initial pattern determined by dispersal has been thoroughly studied, the subsequently modification by the effect of additional ecological factors, such as habitat heterogeneity is less understood. We explored the relative importance of dispersal syndrome and spatial heterogeneity on the realization of spatial patterns of adult trees in an Ecuadorian tropical dry forest. The spatial distribution of 28 species was modeled with four different spatial point processes each: homogeneous Poisson (HPP), inhomogeneous Poisson (IPP), homogeneous Poisson cluster (HPCP), and inhomogeneous Poisson cluster process (IPCP). These models allowed us to discern between effects of random processes, habitat heterogeneity, limited dispersal, and joint effects of habitat heterogeneity and limited dispersal. We employed Akaike's information criterion (AIC) to select the model which best fit the spatial pattern of each species. The best model of each species was used to analyze differences in cluster size and degree of aggregation, between dispersal syndromes. Seventy‐five percent of the species showed inhomogeneous patterns. IPCP yielded the best fit for the spatial distribution of 50% of species in the studied forest and was the prevalent model for the three dispersal syndromes. Thus, the effect of spatial heterogeneity was prevalent in the distribution of most species in this dry tropical forest. Only 21% of species had spatial patterns compatible with random mechanisms associated to limited dispersal around parent sources. Clearly, ignoring habitat heterogeneity could bias the analysis of relationships between dispersal syndrome and species patterns. 相似文献
14.
Providing forage to feed-restricted pregnant sows may improve their welfare by reducing their high feeding motivation. The aim of this study was to determine sows’ preferences for four forage mixtures cultivated in Canada. Forage mixtures were compared when offered either fresh or dry. The four forage mixtures were composed of different proportions and species of legumes (alfalfa ( Alf) or red clover ( Clo)) and grasses (tall fescue ( F) and/or timothy ( T)): (1) Alf-F, (2) Alf-F-T, (3) Clo-T and (4) Clo-F-T. Voluntary intake was measured, and preference tests were carried out for two experiments: one in spring for fresh forages ( n = 8) and the other in autumn for hays ( n = 8) with different sows housed in individual pens and fed a concentrated diet meeting their nutritional requirements for maintenance and foetal growth. Voluntary intake was measured by offering each forage mixture separately (one forage mixture/day) during 90 min according to a 4 × 4 Latin square design replicated four times. During preference tests, all six combinations of two forage mixtures were offered once (one combination/day) for 45 min to each sow. Individual forage intake was measured, and feeding behaviour was observed. Forages were analysed for botanical and chemical composition. Difference in voluntary intake among the four forage mixtures was determined using a variance analysis followed by Tukey tests for post hoc comparisons. In preference tests, differences between the two forage mixtures offered were determined using a paired Student’s t test, and the most ingested forage mixture was considered the preferred one. Results from both experiments revealed clear preferences for some forage mixtures when offered either fresh or dry. Forage mixtures with a greater proportion of legumes (AlfT and CloT) were preferred over forage mixtures with a higher proportion of grasses (AlfFT and CloFT). The AlfFT and CloFT forage mixtures contained at least 30% of fescue; therefore, the greater preference for the AlfT and CloT forage mixtures could also be due to the absence of fescue. Sows preferred forages with low DM and NDF concentrations and high CP and non-structural carbohydrates concentrations. Based on results from previous studies, the preferences seen in the present study are most likely due to the greater proportion of legumes, although an effect of tall fescue in preference cannot be excluded. Therefore, offering forages with a high proportion of legumes would be a good strategy to maximise both fresh and dry forage intake in pregnant sows. 相似文献
16.
Top predators can suppress mesopredators both by killing them and by motivating changes in their behavior, and there are numerous examples of mesopredator release caused by declines in top predator populations. Demonstrated cases of invasive species triggering such releases among vertebrate trophic linkages (indirect facilitation), however, are rare. The invasive cane toad, Bufo marinus, has caused severe population-level declines in some Australian predators via lethal toxic ingestion. During a long-term study of the direct impacts of cane toads on predatory monitor lizards in tropical Australia, we documented significant, marked increases in annual counts of a mesopredator, the common tree snake ( Dendrelaphis punctulatus). Mean snake counts during surveys of 70-km river transects at two sites increased from <1 individual per survey during 2001–2006, to 8–18 per survey in 2007. These increases occurred approximately 3 years following the arrival of cane toads, and 1–3 years after 71–96 % population declines in three species of predatory monitor lizards ( Varanus panoptes, V. mertensi, and V. mitchelli). These data suggest a mesopredator release: the dramatic reduction of predatory monitor lizards caused increases in the tree snake by decreasing predation risk. The increases in tree snake counts were not attributable to either abiotic factors, or a trophic subsidy. The severe declines of predatory monitor lizards, coupled with recent evidence of cascading effects on their prey, suggest that cane toads are re-shaping riparian communities in tropical Australia through both direct negative effects and indirect facilitation. 相似文献
17.
The interaction between microhabitat and inter-annual variation in precipitation has an important role on the dynamics of the seed bank and can play a crucial role in survival and maintenance of plant populations in semi-arid environments. We hypothesized that the type of microhabitat and the inter-annual variability in precipitation can explain the richness and density of the seed bank in a semi-arid region in Brazil. The study was conducted in an area of tropical dry forest with shrub-tree physiognomy, locally called caatinga. We collected 35 soil samples in three distinct microhabitats, at the end of rainy and dry seasons, respectively, over three years, totalling 630 samples. The seed bank (richness and seed density) were determined by seedling emergence method. Over the three years, 79 species emerged from the seed bank, 64, 45 and 42 in riparian, non-riparian and rocky microhabitats, respectively. We recorded differences in species richness and average density between microhabitats and between years, with significant statistical interaction between them. Inter-annual precipitation explained 48% and 5% of the variation in richness and seed density, respectively. Spatial variation explained 7% of the species richness and 31% of the density. Our results show that the interaction between spatial variation and precipitation has an important role on the spatial and temporal heterogeneity of the richness and density of seed banks in dry environments. 相似文献
18.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests ( Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m 2s −1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition. 相似文献
19.
The SITE® model was originally developed to study the response of tropical ecosystems to varying environmental conditions. The present study evaluated the applicability of the SITE model to simulation of energy fluxes in a tropical semi-deciduous forest of the southern Amazon Basin. The model was simulated with data representing the wet and dry season, and was calibrated according to each season. The output data of the calibrated model [net radiation (Rn), latent heat flux (LE) and sensible heat flux (H)] were compared with data observed in the field for validation. Considering changes in parameter calibration for a time step simulation of 30 min, the magnitude of variation in temporal flux was satisfactory when compared to observation field data. There was a tendency to underestimate and overestimate LE and H, respectively. Of all the calibration parameters, the soil moisture parameter presented the highest variation over the seasons, thus influencing SITE model performance. 相似文献
20.
Three analyses of species diversity in a lowland dipterocarp forest were conducted to examine whether the nature of forest community dynamics are determined by density-dependent recruitment and mortality of saplings with a data set obtained in a 50 ha plot in Pasoh Forest Reserve. The first analysis examined whether sapling density varied as a function of distance from the nearest conspecific adult. The second analysis assessed the relationship between the spatial distribution patterns of saplings and adult trees. A third analysis examined sapling recruitment and mortality based on data from 2 censuses, taken in 1985 and 1990. Four hundred forty-four species (each with more than 100 individuals) out of the total of 814 species recorded in the plot, were chosen for the analyses. Of these selected species, 56 species showed significant reduction in sapling densities close to the conspecific adults. Within this group, 11 species were in the emergent layer (29.0% of the total species in this layer), 17 were in the canopy layer (10.5%), 18 were in the understory layer (11.3%), and 10 were in treelet and shrub layer (11.8%). In contrast, the sapling densities of 53 species decreased with increasing distance from conspecific adults; 2 of these species were in the emergent layer (5.2% of the total species in this layer), 14 were in the canopy layer (8.6%), 21 were in the understory layer (13.2%), and 16 were in the treelet and shrub layer (18.8%). The saplings of 35 of the 444 total selected species were clumped, while adults were regularly or randomly distributed. Of the remaining species, in 183 species (41.2%), the distributions of both adults and saplings were clumped. Thus, these 2 analyses do not support the prediction that most of the species of lowland tropical forests fail to produce new adults in their vicinity and as a result of this, adult trees are more regularly distributed than their conspecific juveniles (Janzen 1970). In the third analysis, the recruitment of saplings of species in the emergent and canopy layers increased significantly and in proportion with mortality, suggesting that the dominant species suffer higher mortality than do less common species. This trend is not so apparent in the understory, and the treelet and shrub layers. The results imply that a dynamic equilibrium process, which prevents competitive exclusion and maintains space for minor species, may be active among the species in the upper layers (particularly the emergent layer); however, such a dynamic equilibrium condition is not due exclusively to the reduced recruitment of saplings near conspecific adults, and the dynamic equilibrium condition is not prevalent among the lower story species. 相似文献
|