首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Moretto  A. S.  Distel  R. A. 《Plant Ecology》1997,130(2):155-161
The argument that selective grazing leads to competitive replacement of palatable grasses by unpalatable grasses is based upon the assumption that the competitive ability of the palatable species is higher than the one of unpalatable species in the absence of grazing. In order to test this hypothesis we have compared the competitive ability of Stipa clarazii (palatable) and S. trichotoma (unpalatable) under field conditions, and S. clarazii and S. gynerioides (unpalatable) under greenhouse conditions. The three species are native to a temperate semi-arid grassland of central Argentina. In the field experiment, plants of both species were grown either independently or in pairs (palatable + unpalatable), protected from grazing. Shoot and seed production were measured at the end of the growing seasons of 1993, 1994 and 1995. In the greenhouse experiment, plants of both species were grown in pots, either in monoculture or in mixture, under conditions of high and low water and mineral nutrient availability. Total biomass and seed production were measured at the end of the experimental period. In both experiments the presence of the unpalatable species did not affect (P < 0.05) the productive responses of the palatable species. On the contrary, the presence of the palatable species significantly reduced (P < 0.05) the productive responses of the unpalatable species. Our results support the assumption, on which most interpretations of floristic changes induced by grazing are based, that the competitive ability of palatable grasses is higher than the one of unpalatable grasses in the absence of grazing.  相似文献   

3.
This study examines the effects of burning and granivory on the reproductive success of the rare plant Amsinckia grandiflora (Boraginaceae). Fire is often used in California grasslands as a means of exotic species control, but the indirect effects these controls have on the reproductive ecology of native plants are rarely assessed. The interaction of fire with granivory of A. grandiflora seeds was examined in California grasslands over five years (1998–2002). In 1998 and 1999, both burned and unburned plots had bird-exclusion (netted) and no-exclusion (open) treatments. Predation rates were high (51–99%) and final predation rates did not differ among treatments. In 2000, granivory rates in the unburned, open plots were lower than in previous years (14%), and rodent trapping yielded only a single animal. Low granivory rates were observed in 2001 for unburned, open plots (47%). In 2001, burned/open plots experienced significantly more granivory (87%) than either burned/netted plots (37%) or unburned/open plots (47%). In 2002, every seed was taken from burned, open plots. Granivory was highly variable, ranging from 4 to 100% per plot over a 3-week period. Nearly all plots were discovered (>10% predation) by granivores in all trials in all years. When data from all treatments were combined, significant differences in granivory rates occurred among years, indicating stronger inter-year effects than within-year effects due to burning or bird exclusion. Fire affects granivory when overall predation rates are low, but when predation levels are high (as they were in 1998 and 1999), fire may not affect granivory occurring within the same year. Models extending seed survivorship through the dry summer indicate that most seeds are eaten, even when granivory rates are low.  相似文献   

4.
Population dynamics, biomass and secondary net production of orthopterans, particularly acridids, were studied in a temperate grassland at Naukuchiatal, India, from February 1986 to January 1988. A total of 38 plant species were recorded in the grassland and mean aboveground net primary production was 6760 kJ m-2 per year. Thirteen orthopteran species occurred in the grassland. Most individuals were acridids, followed by tettigonids and gryllids; acridids were dominant both in density and biomass. The maximum population density was 5 m-2 and the maximum biomass was 275 mg m-2. Mean secondary net production was 10 kJ m-2 per year. Acridids consumed an average of 2.3% of the above-ground primary production.  相似文献   

5.
Alterations in soil bacterial communities across a transect between a semi natural upland grassland and an agriculturally improved enclosure were assessed using culture-based methods and a nucleic-acid-based method, terminal restriction fragment length polymorphism (TRFLP). While plant diversity decreased across the transect towards the improved area, numbers of 16S rDNA terminal restriction fragments increased, indicating an increase in numbers of bacterial ribotypes. Bacterial numbers, microbial activity, and potential functional diversity also followed a similar trend, increasing with decreasing plant diversity. Alterations in bacterial community structure were coincident with changes in soil physicochemical properties which also changed across the transect. Increases in soil pH, nitrate, phosphorus, potassium, and calcium occurred toward the improved grassland, while organic matter and ammonium declined. The inverse relationship between floristic diversity and bacterial ribotype numbers suggests that soil physicochemical factors may be as influential in determining bacterial diversity in soils of upland grassland communities as floristic diversity.  相似文献   

6.
Accurate knowledge of the response of root turnover to a changing climate is needed to predict growth and produce carbon cycle models. A soil warming system and shading were used to vary soil temperature and received radiation independently in a temperate grassland dominated by Holcus lanatus L. Minirhizotrons allowed root growth and turnover to be examined non‐destructively. In two short‐term (8 week) experiments, root responses to temperature were seasonally distinct. Root number increased when heating was applied during spring, but root death increased during autumnal heating. An experiment lasting 12 months demonstrated that any positive response to temperature was short‐lived and that over a full growing season, soil warming led to a reduction in root number and mass due to increased root death during autumn and winter. Root respiration was also insensitive to soil temperature over much of the year. In contrast, root growth was strongly affected by incident radiation. Root biomass, length, birth rate, number and turnover were all reduced by shading. Photosynthesis in H. lanatus exhibited some acclimation to shading, but assimilation rates at growth irradiance were still lower in shaded plants. The negative effects of shading and soil warming on roots were additive. Comparison of root data with environmental measurements demonstrated a number of positive relationships with photosynthetically active radiation, but not with soil temperature. This was true both across the entire data set and within a shade treatment. These results demonstrate that root growth is unlikely to be directly affected by increased soil temperatures as a result of global warming, at least in temperate areas, and that predictions of net primary productivity should not be based on a positive root growth response to temperature.  相似文献   

7.
Frank DA  Gehring CA  Machut L  Phillips M 《Oecologia》2003,137(4):603-609
The effect of the community composition of soil microbes on ecosystem processes has received relatively little attention. Here we examined the variation in soil microbial composition in a Yellowstone National Park grassland and the effect of that variation on the growth, in a greenhouse, of the dominant grass in the community. Plants and their rhizospheric soil were collected from paired, Poa pratensis-dominated grassland plots located inside and outside a 40-year-old exclosure. P. pratensis aboveground, belowground, and whole plant growth were greater in pots with soil communities from grazed grassland compared to fenced grassland, indicating (1) soil microbial communities differed, and (2) this difference influenced the growth of the plant that dominated both grasslands. Treating pots with fungicide (benomyl) suppressed the soil community influence, indicating that different fungal communities caused the soil microbe effect. In addition, two lines of evidence are consistent with the hypothesis that arbuscular mycorrhizal fungal (AMF) species composition affected P. pratensis: (1) a divergence in AMF spore communities in the two field soils, and (2) little evidence of pathogenic fungi. These findings emphasize the need to examine the role that the composition of the soil microbial community plays in controlling terrestrial ecosystems.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

8.
Monoliths of a fertile, N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 µmol mol‐‐1) using a Mini‐FACE system, from August 1998 to June 2001 and were subjected to two contrasting cutting frequencies (3 and 6 cuts per year). We report here the effects of the CO2 and cutting frequency factors on the plant community structure and its diversity. Species‐specific responses to elevated CO2 and cutting frequency were observed, which resulted in significant changes in the botanical composition of the grassland monoliths. Elevated CO2 significantly increased the proportion of dicotyledones (forbs + legumes) and reduced that of the monocotyledones (grasses). Management differentiated this response as elevated CO2 increased the proportion of forbs when infrequently and of legumes when frequently defoliated. However, among the two dominant forbs species only one was significantly enhanced by elevated CO2. Moreover, not all grass species responded negatively to high CO2. At a low cutting frequency, the observed decline under ambient CO2 in species diversity (Shannon‐Weaver index) and in forb species number was partly alleviated by elevated CO2. This experiment shows that the botanical composition of temperate grasslands is likely to be affected by the current rise (+ 0.5% per year) in the atmospheric CO2 concentration, and that grassland management guidelines may need to be adapted to a future high CO2 world.  相似文献   

9.
Floristically diverse Nardo-Galion upland grasslands are common in Ireland and the UK and are valuable in agricultural, environmental and ecological terms. Under improvement (inputs of lime, fertiliser and re-seeding), they convert to mesotrophic grassland containing very few plant species. The effects of upland grassland improvement and seasonality on soil microbial communities were investigated at an upland site. Samples were taken at five times in one year in order to observe seasonal trends, and bacterial community structure was monitored using automated ribosomal intergenic spacer analysis (ARISA), a DNA-fingerprinting approach. Differences in soil chemistry and bacterial community structure between unimproved and improved grassland soils were noted. Season was also found to cause mild fluctuations in bacterial community structure, with soil samples from colder months (October and December) more correlated with change in ribotype profiles than samples from warmer months. However, for the majority of seasons clear differences in bacterial community structures from unimproved and improved soils could be seen, indicating seasonal influences did not obscure effects associated with improvement.  相似文献   

10.
Xi  Nianxun  Zhu  Bi-Ru  Zhang  Da-Yong 《Plant and Soil》2017,412(1-2):267-281

Aims

The uptake and tolerance of antimonite [Sb(III)] and antimonate [Sb(V)] were investigated in two populations of Achillea wilhelmsii, one from strongly Sb-enriched mine soil, the other from uncontaminated soil, in comparison with non-metallicolous Silene vulgaris and Thlaspi arvense.

Methods

Tolerance was assessed from root elongation and biomass accumulation after exposure to a series of concentrations of Sb(III) or Sb(V) in hydroponics.

Results

For all the species Sb(III) was more toxic than Sb(V). S. vulgaris was the most Sb(III)-tolerant species, and A. wilhelmsii the most Sb(V)-tolerant one. There were no considerable interspecific differences regarding the root and shoot Sb concentrations. Sb(III) and Sb(V) tolerance and accumulation were not different between the metallicolous and the non-metallicolous A. wilhelmsii populations. Sb(III) uptake was partly inhibited by silicon. Sb(V) uptake was strongly inhibited by chloride.

Conclusions

There is uncorrelated variation among species in Sb(V) and Sb(III) tolerance, showing that plants sequester Sb(V) and Sb(III) in different ways. Sb(V) seems to be taken up via monovalent anion channels, and Sb(III) via silicon transporters, at least in part. The relatively high Sb(V) tolerance in A. wilhelmsii seems to be a species-wide property, rather than a product of local adaptation to Sb-enriched soil.
  相似文献   

11.
Grasslands and their grazers provide some of the most compelling examples for studying the relationship between diversity, productivity, and disturbance. In this study, we analyzed the impact of grazing-induced changes in species composition and community structure upon the productivity of a grassland in the Campos region, Uruguay. We compared three treatments: a continuously grazed area, a 9-year old exclosure to domestic herbivores, and grazing-simulated plots inside the exclosure, which were clipped so that their standing biomass resembled that of the grazed area. We studied the community composition of the grazed and ungrazed situations, and determined biomass and above-ground net primary production (ANPP) of the three treatments during 1 year. Grazed plots had higher species richness and diversity than the exclosure. Grazing resulted in the replacement of some cool-season, tussock grasses by warm-season, prostrate grasses. ANPP was 51% higher under grazing than in the exclosure, but the grazing-simulated plots inside the exclosure were the most productive treatment, 29% higher than the grazed plots. Thus, two components of grazing effect may be postulated for this grassland. The structural component resulted in higher ANPP, probably due to the elimination of standing dead biomass. The species composition component resulted in lower ANPP once the structural component was controlled, probably due to the shift to warm-season phenology and prostrate habit. Our findings contrast with a similar experiment carried out in the neighbouring Flooding Pampa region, which suggests that the relationship between grazing and community structure and function is difficult to generalize.  相似文献   

12.
13.
14.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

15.
16.
Agricultural improvement (fertilisation, liming, intensification of grazing) of acidic upland pastures results in loss of indigenous flora and notable changes in microbial community structure. Such practices have recently raised concerns regarding the possible impacts on natural ecosystem biodiversity and functioning. The effects of synthetic sheep urine (SSU) and plant species on fungal community structure in upland grassland microcosms were investigated. Plant species typical of agriculturally unimproved (Agrostis capillaris) and improved (Lolium perenne) pastures were treated with low, medium or high concentrations of SSU, with harvests carried out 10 d and 50 d after SSU application. Root biomass was negatively affected by SSU addition whereas shoot biomass did not display any significant change. Fungal richness (number of operational taxonomic units) was negatively correlated with SSU concentration (p < 0.001), and also with time (p < 0.001).Multi-dimensional scaling plots revealed significant changes in fungal community composition, depending on concentration of SSU and plant species type, while canonical correspondence analysis also emphasised the importance of interacting environmental variables. In addition, SIMPER analyses supported the finding that shifts in fungal community composition under different SSU and plant treatments had occurred. Overall, while SSU appeared to be influential in determining fungal community structure, community changes were largely driven by interacting environmental factors. This study contributes to our understanding of the potential implications of intensified farming, in particular increased pressure from grazing animals, on fungal community structure in semi-natural grassland systems.  相似文献   

17.
Determinants of C3 forb growth and production in a C4 dominated grassland   总被引:2,自引:0,他引:2  
Forbs are the most abundant species within the vascular flora of tallgrass prairie and they make the greatest contribution to biodiversity of all growth forms. However, little is known about the factors that determine their productivity and growth rates. The objective of this study was to assess the controls of forb growth (absolute and relative) and production in tallgrass prairie from a long-term burning experiment at the Konza Prairie in NE Kansas. Over the 14-year study, forbs comprised 9% of the total biomass production on sites with a high fire frequency vs. 29% on the low fire frequency site, with gramminoids accounting for the remainder. Although interannual variations in peak biomass of the grasses was strongly correlated with environmental variables related to water availability, there were no similar relationships for forbs, suggesting that production of forbs and grasses responded to interannual variations in climate in different ways. Multivariate analysis of climatic controls on growth rates of grasses and forbs yielded similar results. Although forbs had low biomass and absolute growth per unit ground area in frequently burned prairie, their relative growth rates were highest in such sites. Thus, it appears that reduced growth rates of individual forbs per se do not limit forb success in annually burned prairie. Instead, direct negative effects of fire on forbs (increased mortality) may be responsible. Determinants of forb growth and productivity in unburned prairie remain unresolved.  相似文献   

18.
19.
20.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号