首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potency of several metal compounds in causing lesions in DNA either directly or by exposure of intact cultured cells has been examined using the neutral conditions of nucleoid gradient sedimentation. HgCl2 was clearly the most potent inducer of single-strand breakage when added to isolated nucleoids or when nucleoids were prepared from cells treated with this compound. CaCrO4 , however, caused DNA-strand breaks in nucleoids isolated from cells treated with this agent but did not induce DNA strand breaks when added directly to nucleoids. Although less potent than HgCl2, NiCl2 also caused significant single strand breakage in isolated nucleoids or in nucleoids prepared from cells treated with this metal. Since strand breakage of DNA in intact cells may occur secondary to activation of DNA-dependent nucleases during repair replication, CsCl gradient density sedimentation was utilized to examine whether repair processes were induced by exposure of cells to NiCl2, HgCl2 and CaCrO4 . CaCrO4 and NiCl2 induced substantial DNA-repair activity at concentrations and exposure times where DNA lesions could not be detected whereas HgCl2 induced a 10-fold lower level of DNA-repair activity compared to CaCrO4 at optimal concentrations which again were below the concentrations of this metal that produced measurable DNA lesions. Both the induction of DNA-repair activity and DNA-strand breakage by these metals was concentration- and time-dependent. These results demonstrate some unique aspects of the interaction of HgCl2, NiCl2 and CaCrO4 with the DNA of intact cells and point to the possible important correlation of induction of DNA repair to carcinogenesis since nickel and chromate have clearly been implicated as carcinogens and induce considerable repair whereas HgCl2 is not considered a carcinogen and induces the least DNA repair despite its potency in producing DNA lesions.  相似文献   

2.
Direction of DNA replication in mammalian cells   总被引:15,自引:0,他引:15  
We have re-examined the direction of DNA synthesis in mammalian cells by means of pulse-labeling with [3H]thymidine and DNA autoradiography. Our results show that, whether or not the cells are treated with 5-fluoro-deoxyuridine, and whether they are labeled first with high specific activity [3H]thymidine and then with low, or vice versa, most (? 90%) of the unambiguous autoradiographic patterns can be explained by bidirectional replication but not by unidirectional replication.We also find that in autoradiographic experiments using two different specific activities of [3H]thymidine, obvious differences in grain density are obtained only when the difference in specific activity is threefold or more. Thus, the apparently contradictory findings of Lark et al. (1971) can be explained by the low difference in specific activity used by those authors.  相似文献   

3.
4.
Both oncogenic adenovirus (BAV-3) and nononcogenic adenovirus (Ad-1) are able to induce gene mutations in cultured mammalian cells. In the case of equal multiplicity of the infection the frequency of induced mutations is higher in variants with Ad-1. Unlike Ad-1 both mutagenic and transforming effects of BAV-3 are intensified by means of TPA promoters. TPA modifies analogously mutagenic and transforming effect of much less than oncogenic fragment much greater than of DNA BAV-3. Oncogene and, probably, other viral genes reveal mutagenic activity.  相似文献   

5.
Quinone-induced cell death is often attributed to oxidative stress during which the formation of DNA strand breaks is thought to play an important role. In this study, extensive DNA damage was observed in human chronic myelogenous leukemic cells (K562) exposed for 15 minutes to low concentrations (15–100 μM) of the redox cycling quinones 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ) and menadione. However, DNA strand breakage and cell death could not be attributed to oxidative stress as the intracellular level and redox status of the reducing equivalents NADP(H) and GSH were unaffected. The intracellular level of NAD+ was found to correlate well with the extent of DNA repair (r = 0.93, P < 0.02) and cell proliferation (r = 0.96, P < 0.01) in cells exposed to the quinones. In contrast, a significant decrease in the level of intracellular ATP was only observed in cells exposed to menadione (50–100 μM). These results suggest that redox cycling quinones are capable of inducing DNA damage in mammalian cells by a mechanism that does not involve oxidative stress. Following DNA damage, cell death is dependent on the availability of NAD+, which may be key to the rapid repair of strand breaks. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
To analyze relationships between replication and homologous recombination in mammalian cells, we used replication inhibitors to treat mouse and hamster cell lines containing tandem repeat recombination substrates. In the first step, few double-strand breaks (DSBs) are produced, recombination is slightly increased, but cell lines defective in non-homologous end-joining (NHEJ) affected in ku86 (xrs6) or xrcc4 (XR-1) genes show enhanced sensitivity to replication inhibitors. In the second step, replication inhibition leads to coordinated kinetics of DSB accumulation, Rad51 foci formation and RAD51-dependent gene conversion stimulation. In xrs6 as well as XR-1 cell lines, Rad51 foci accumulate more rapidly compared with their respective controls. We propose that replication inhibition produces DSBs, which are first processed by the NHEJ; then, following DSB accumulation, RAD51 recombination can act.  相似文献   

7.
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (AL) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2–3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in AL cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

8.
Arsenic induces oxidative DNA damage in mammalian cells   总被引:3,自引:0,他引:3  
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (A(L)) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2-3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in A(L) cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

9.
Specificity of mutations induced in transfected DNA by mammalian cells   总被引:29,自引:1,他引:28       下载免费PDF全文
DNA transfected into mammalian cells is subject to the high mutation frequency of approximately 1% per gene. We present data bearing on the derivation of the two main classes of mutations detected, base substitutions and deletions. The DNA sequence change is reported for nearly 100 independent base substitution mutations that occurred in shuttle vectors as a result of passage in simian cells. All of the mutations occur at G:C base pairs and involve either transition to A:T or transversion to T:A. To identify possible mutational intermediates, various topological forms of the vector DNA were introduced separately. Supercoiled and relaxed DNA are mutated at equal frequencies. However, linearized DNA leads to a greatly elevated frequency of deletions. Nicked and gapped templates stimulate both deletions and base substitutions. We discuss a model involving intracellular degradation of the transfected DNA which explains these observations.  相似文献   

10.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

11.
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy.  相似文献   

12.
The extent of coordinate control over the multiple initiation events in DNA replication has been investigated in three mammalian cell lines by DNA fiber autoradiography. Quantitative estimates have been obtained of the degree of synchrony among initiations occurring on stretches of DNA. Synchrony decreases markedly with increasing distance between initiation sites in MDBK (bovine) and L929 (mouse) cells, but only slightly in muntjac cells. Possible control mechanisms for the initiation process are discussed.  相似文献   

13.
We have studied the initiation of DNA replication in mammalian cells in tissue culture, using DNA fiber autoradiography to analyze initiation events occurring during 10 or 30-minute [3H]thymidine labeling periods. The mean distance between initiation sites varies in cells from different mammalian species. In mouse L cells, functioning initiation sites are distributed in clusters. The modal interval between individual sites is 40 to 50 μm, and the sites do not appear to occur at regular intervals. Initiation events appear partially synchronized in autoradiograms from DNA fibers spread over any one microscopic field of the autoradiographic slide (0.16 mm2), suggesting that such events occur in bursts over topographically contiguous regions of DNA. In cells infected with reovirus, a cytocidal RNA virus that markedly inhibits overall DNA replication in infected L cells, the distance between initiation sites labeled during a ten-minute pulse is increased. This indicates that the frequency of initiation events over localized regions of DNA is reduced by reovirus infection.  相似文献   

14.
15.
Accurate dosimetry for chemical mutagens is extremely difficult, and precise manipulation of the frequency of a particular lesion is ordinarily impossible. With 8-MOP plus UVA, however, both are possible because 8-MOP, when photoactivated by one photon of UVA, forms monoadducts whilst crosslinks are formed only if a second photon of light photoactivates the monoadducts. If 8-MOP molecules that are unreacted after a UVA exposure are removed from cells by washing, the effect of a subsequent UVA irradiation can be attributed only to the conversion of monoadducts to DNA interstrand crosslinks. Using this experimental procedure and L5178Y mouse lymphoma cells, we have shown that DNA interstrand crosslinks are at least 10-fold more effective at causing both sister-chromatid exchanges and chromosomal aberrations than are monoadducts. In contrast, crosslinks are no more effective than monoadducts in mutation induction. These experiments identify directly for the first time that a particular chemically induced lesion, DNA interstrand crosslinks, can, like thymine dimers, cause chromosomal aberrations and sister-chromatid exchanges. The results also show that sister-chromatid exchanges can be induced independently of mutations.  相似文献   

16.
17.
G P Reddy  W C Reed  E Sheehan  D B Sacks 《Biochemistry》1992,31(43):10426-10430
The involvement of calmodulin in the proliferation of Chinese hamster embryo fibroblast cells has been studied with a specific monoclonal antibody to calmodulin. We observed that calmodulin levels increase 2-fold in the late G1 period in these cells, and this coincides with the increase in DNA polymerase alpha activity as the cells progress synchronously from a quiescent state in the G1 to the S phase. However, there is a concurrent 10-fold enhancement of thymidine kinase activity, which is tightly coupled to the entry of cells into the S phase. Incubation of permeabilized S-phase cells with calmodulin-specific murine monoclonal antibody resulted in a dose-dependent inhibition of DNA replication. This inhibitory effect of anti-calmodulin antibodies on DNA replication is completely reversed by the addition of exogenously purified calmodulin. These observations provide evidence for the involvement of calmodulin in DNA replication and, therefore, in cell proliferation during the S phase.  相似文献   

18.
19.
Reactive oxygen species produce oxidized bases, deoxyribose lesions and DNA strand breaks in mammalian cells. Previously, we demonstrated that aldehydic DNA lesions (ADLs) were induced in mammalian cells by 10 mM hydrogen peroxide (H2O2). Interestingly, a bimodal H2O2 dose–response relationship in cell toxicity has been reported for Escherichia coli deficient in DNA repair as well as Chinese hamster ovary (CHO) cells. Furthermore, it has been demonstrated that H2O2 causes single-strand breaks in purified DNA in the presence of iron and induces mitochondrial DNA damage in CHO cells with a biphasic dose–response curve. Here we show that H2O2 produces ADLs at concentrations as low as 0.06 mM in HeLa cells and that lower concentrations of H2O2 were much more efficient at inducing ADLs than higher concentrations. This dose–response curve is strikingly similar to that for cell killing effects in E.coli deficient in DNA repair exposed to H2O2. Interestingly, serial treatment of submillimolar levels of H2O2 induced a massive accumulation of ADLs. The toxicity arising from H2O2 determined by intracellular NAD(P)H in cells correlated well with the formation of ADLs. The addition of dipyridyl, an iron (II)-specific chelator, significantly protected against DNA damage and cell toxicity from submillimolar, but not millimolar, amounts of H2O2. These results suggest that ADLs induced by submillimolar levels of H2O2 may be due to a Fenton-type reaction between H2O2 and intracellular iron ions in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号