首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable T cell clones, which displayed MHC-restricted MV Ag recognition, could be assessed by using purified MV proteins. Two fusion (F) protein-specific, two hemagglutinin-specific, and three nucleoprotein- or matrix protein-specific clones were shown to be established. The F protein-specific T cell clones together with a panel of previously generated F protein-specific T cell clones were characterized for their fine specificity by using beta-galactosidase fusion products, which contained different parts of the F protein. It was shown that at least two epitopes on the major part of the F protein (amino acid 2-513) can be recognized by mouse T cells. Functional characterization of three T cell clones showed that they were able to assist MV-specific B cells and bystander B cells for antibody production. Furthermore, they were shown to produce the lymphokines IL-2 and IFN-gamma. It was also shown that these T cell clones induced a MV-specific delayed type hypersensitivity response. These observations suggest that all of the T cell clones characterized belong to the TH1 helper subset.  相似文献   

2.
Mice were infected with Listeria monocytogenes and Lyt-2+ T cell clones capable of lysing Ag-primed bone marrow macrophages were established. In accordance with earlier findings obtained at the population level, some T cell clones were identified which lysed bone marrow macrophages of different MHC type provided the relevant Ag was present. This unusual target cell recognition was further analyzed using a T3+, L3T4-, Lyt-2+, F23+, KJ16+ T cell clone, designated L-28. Target cell lysis by this clone was Ag specific, apparently non-MHC restricted. In contrast, YAC cells and P815 cells were not lysed by clone L-28. However, lysis of irrelevant targets could be induced by anti-T3, F23, or KJ16 mAb. Furthermore, Ag-specific lysis was blocked by anti-Lyt-2 mAb and by F(ab)2 fragments of F23 mAb. In addition to its cytolytic activity, clone L-28 produced IFN-gamma after co-stimulation with accessory cells, Ag, and rIL-2 and conferred significant protection on recipient mice when given together with rIL-2. These data suggest that non-MHC-restricted Lyt-2+ killer cells generated during listeriosis are cytolytic T lymphocytes that interact with their target Ag via the T cell receptor/T3 complex and the Lyt-2 molecule and, furthermore, that these cells play a role in anti-listerial resistance. The possible relevance of IFN-gamma secretion and target cell lysis for antibacterial protection is discussed.  相似文献   

3.
Functional heterogeneity among human inducer T cell clones   总被引:12,自引:0,他引:12  
Analysis of mouse CD4+ inducer T cells at the clonal level has established that a dichotomy among CD4+ T cell clones exists with regard to types of lymphokines secreted. Mouse T cell clones designated Th1 have been shown to secrete IL-2 and IFN-gamma, whereas T cell clones designated Th2 have been shown to produce IL-4 but not IL-2 or IFN-gamma. To determine if such a dichotomy in the helper inducer T cell subset occurred in man, we examined a panel of human CD4+ helper/inducer T cell clones for patterns of lymphokine secretion and for functional activity. We identified human T cell clones which secrete IL-4 but not IL-2 or IFN-gamma, and which appeared to correspond to murine Th2 clones. In marked contrast to murine IL-2 secreting Th1 clones which do not produce IL-4 or IFN-gamma, we observed that some human T cell clones secrete IL-2, and IFN-gamma as well as IL-4. Southern blot analysis indicated that these multi-lymphokine-secreting clones represented the progeny of a single T cell. IL-4 secretion did not always correlated with enhanced ability to induce Ig synthesis. Although one T cell clone which secreted IL-2, IL-4, and IFN-gamma could efficiently induce Ig synthesis, another expressed potent cytolytic and growth inhibitory activity for B cells, and was ineffective or inhibitory in inducing Ig synthesis. These results indicate that although the equivalent of murine Th2 type cells appears to be present in man, the simple division of T cells into a Th1 and Th2 dichotomy may not hold true for human T cells.  相似文献   

4.
Clone B is a cytotoxic T cell clone induced by immunization with Plasmodium yoelii sporozoites which recognizes an epitope on both the P. yoelii and Plasmodium berghei circumsporozoite proteins. It is CD8, uses the V beta 8.1 TCR, and is Kd restricted. When adoptively transferred, it protects mice against infection by both species of malaria sporozoites, and this protection is dependent on IFN-gamma. Clone B cells are more broadly reactive and protective than previously described murine T cell clones against malaria. Clone B may be an important model for immune protection against the spectrum of variant parasites in nature.  相似文献   

5.
Supernatants collected after primary or secondary stimulation of spleen cells contain different arrays of lymphokines. Primary supernatants from spleen cells stimulated with Con A or allogeneic spleen cells (MLC-SF) contain IL-2 but little IL-4 or IGN-gamma; in contrast, secondary MLC-SF contains IL-2 as well as substantial IL-4 and IFN-gamma. Our laboratory previously had always used secondary MLC-SF for cloning T cells, and had routinely obtained TH1 helper T lymphocyte clones. In the present study, when primary Con A-SF was used as source of growth factors, TH2 and not TH1 clones were preferentially derived. Considering the possibility that IFN-gamma may be one important factor in determining whether TH1 or TH2 clones are preferentially obtained, clone derivation was then performed either in the presence of rIL-2 or rIL-2 plus rIFN-gamma. The majority of clones derived using rIL-2 alone were TH2 cells, whereas the majority of clones derived using rIL-2 plus rIFN-gamma were TH1 cells. Using either procedure, some clones were obtained that produced IL-2, IL-4, and IFN-gamma. These data are consistent with our previous observations that IFN-gamma inhibits the proliferation of TH2 but not TH1 clones, and suggest that the presence of IFN-gamma during an immune response would result in the preferential expansion of helper T lymphocytes of the TH1 phenotype. Our procedure for the differential selection of TH1 and TH2 clones reactive with the same Ag should be useful for designing in vitro systems for studying the function of these cell subsets in specific immune responses.  相似文献   

6.
In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell clones here studied were restimulated either with IPSm or with schistosomulum Ag, it appears that such IPSm-specific T cell clones could be involved in the concomitant immunity mechanisms.  相似文献   

7.
T cell-dependent, cell-mediated immune mechanisms have been shown to contribute to resistance against malaria. Because the identity of plasmodial Ag responsible for the activation of these protective immune responses remains unknown, a major step in isolating these potential immunizing agents will be the development of adequate screening procedures designed to identify important T cell Ag. This study focused on the isolation of protective T cell clones that may play a pivotal role in this process. A T cell clone designated CTR2.1 and two subclones derived from it adoptively transferred protection to athymic nude mice infected with Plasmodium chabaudi adami, a murine malarial parasite known to be recognized by protective thymus-dependent immune mechanisms. The protective T cell clone displayed a L3T4+, Lyt-2- surface phenotype and secreted both IFN-gamma and IL-2 after stimulation with solubilized parasites in vitro. This is the first report of results demonstrating a cloned T cell line capable of providing adoptive protection against malaria in vivo. More importantly, CTR2.1 and other protective T cell clones may provide for the identification of plasmodial antigenic epitopes recognized by important cell-mediated immune mechanisms during acute malarial infection.  相似文献   

8.
9.
An Ag-specific interleukin 1 (IL-1)-dependent bovine CD4+ Th cell clone, termed 300B1, was isolated and found to resemble the previously described IL-1-dependent murine CD4+ Th2 cell clone, D10.G4.1. Both the 300B1 and the D10.G4.1 T cell clones proliferated to bovine (Bo) IL-1 beta, human (Hu) IL-1 alpha and IL-1 beta, and murine IL-1 alpha when cells were costimulated with concanavalin A (Con A). Proliferation of the 300B1 clone, when costimulated with Con A, appeared to be IL-1-specific in that proliferation could not be promoted by BoIL-2, HuIL-3, HuIL-4, HuIL-5, or HuIL-6. The 300B1 clone produced interferon-gamma (IFN-gamma), but not IL-2 following stimulation with either Con A, Con A plus phorbol 12-myristate 13-acetate or Ag plus antigen-presenting cells. Upon stimulation with Con A, the 300B1 clone expressed IL-4 mRNA and produced an autocrine growth factor (AGF) that could be inhibited by anti-HuIL-4 but not by anti-HuIL-2 Ab. The clonal derivation of the 300B1 clone was confirmed by isolating five 300B1 subclones, all of which produced IFN-gamma and an AGF but not IL-2. Collectively, these results suggest the IL-1-dependent bovine 300B1 Th cell clone produces IL-4, but not IL-2, as an AGF. Furthermore, the bovine Th cell clone appeared to share many characteristics of previously described murine Th2 cell clones except that the bovine clone produced IFN-gamma.  相似文献   

10.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

11.
It has been assumed, without direct evidence, that T cell hybridomas and non-transformed T cell clones are both good models of normal Ag-specific T cells. To compare directly the difference in activation of cloned normal T cells and T hybridoma cells with the same TCR, cloned T hybridoma cells were obtained by fusing pre-established, myoglobin-specific, Iad-restricted T cell clones (14.5 and 9.27) with BW5147 cells. T cell clones were pre-activated with IL-2 as well as specific Ag before fusion. Cloned T hybridoma A3.4C6 was derived from Lys 140-specific and I-Ed-restricted clone 14.5. The other cloned T hybridoma, C7R14, was a fusion product of Glu 109-specific and I-Ad-restricted clone 9.27. Both T hybridomas showed the same Ag specificity and Ia restriction as the parental cloned T cells. However, C7R14 showed higher apparent affinity and broader cross-reactivity than 9.27. Clone 14.5, but not hybridoma A3.4C6, appeared to stimulate splenic cells to secrete cytokines inhibiting HT-2A cell proliferation. The most striking difference between the clones and hybridomas was that both clones, but neither of the matched hybridomas, were induced to synthesize IL-1 on stimulation with Ag. Finally, both cloned T cells and T hybridomas killed Ag-pulsed Iad-bearing B lymphoma target cells. This evidence suggests that killing function can be inherited from clones to hybridomas. However, the clones were much more efficient at killing than the hybridomas, and the hybridomas were more efficient at IL-2 production than the clones. Thus, matched pairs of clones and hybridomas differ in their capacity to mediate the two functions or may tend to be selected differently during cloning. Thus, although our results generally support the validity of T cell hybridomas as faithful models of the corresponding T cell clones, a number of subtle and not-so-subtle differences indicate that caution must be used in such an extrapolation.  相似文献   

12.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

13.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

14.
Five monoclonal antibodies specific towards Schistosoma mansoni antigens were prepared by fusion of spleen cells of infected and immunized mouse with the murine myeloma NS-1 cells. Three of the five antibodies belonged to the IgG1 class, one was an IgM and the fifth one was an IgE. The IgE monoclonal antibody designated 54.10, induced antigen-specific degranulation of rat basophilic cell line, a property which served as the basis for the screening assay. Its biological function was demonstrated by a specific macrophage activation that led to killing of schistosomula; no such killing was obtained with anti-schistosome antibodies of other classes or with IgE of different antigenic specificity. The second monoclonal antibody of biological significance was an IgG1, designated 27.21 which is reactive in the immunofluorescence staining of surface antigens on intact schistosomula. All three monoclonal antibodies that belonged to the IgG1 class were effective in mediating killing of schistosomula by complement, with the highest effect exerted by 27.21. It is thus apparent that the 27.21 monoclonal antibody is directed against a densely distributed surface antigen on the schistosomula membrane which is possibly involved in the protective immunity. Preliminary data showed that immunoprecipitation with the 27.21 antibodies results in the isolation of three major protein bands, of 60 kd, 50 kd, 19 kd, respectively.  相似文献   

15.
In C57Bl/6 strain mice vaccinated with attenuated cercariae of Schistosoma mansoni, the major site of immune elimination of normal challenge parasites is the lungs. The immune effector mechanism involves formation of focal inflammatory responses; the abundance of CD4+ T cells and the activation of alveolar macrophages suggests a role for inflammatory cytokines. We report the profile of cytokines produced by cultures of leukocytes recovered by bronchoalveolar lavage (BAL) from the lungs of vaccinated and challenged mice. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes that produced abundant quantities of IFN-gamma and IL-3 on stimulation with larval Ag. Production declined from day 21 although the infiltrate of lymphocytes persisted. Challenge of vaccinated mice resulted in a second influx of IFN-gamma and IL-3-producing cells, earlier than after vaccination or in the appropriate controls. Ablation studies revealed that CD4+ T cells were essential for the production of IFN-gamma. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures be stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells. When Ag released from challenge schistosomula is presented to these cells, they respond by secreting cytokines that mediate the formation of cellular aggregates around the parasites, blocking their onward migration.  相似文献   

16.
Some T lymphocytes express the CD94 Ag, which is known to form heterodimers with members of the NKG2 family. We have studied the expression pattern and function of CD94 heterodimers in different alphabeta or gammadelta T cell clones. Most of the CD94+NKG2A- T cells have a low to intermediate expression of CD94 Ag. The cross-linking of the CD94/NKG2 heterodimer in one of these CD8 alphabeta CD94+NKG2A- T cell clones (K14B06) was able to: 1) increase the intracellular concentration of Ca2+, 2) induce the up-regulation of CD25 Ag expression and the secretion of IFN-gamma, and 3) trigger redirected cytotoxicity in a TCR-independent manner. This activatory property was not shared by any other costimulatory molecule expressed by the K14B06 T cell clone, including CD8, CD28, CD45, CD69, or CD2 Ags. The immunoprecipitation of CD94 heterodimer showed a 39-kDa band with a similar m.w. to the activatory heterodimer found on some NK clones. A novel form of the NKG2 family (NKG2H) was identified in K14B06. NKG2H protein represents an alternative spliced form of the NKG2E gene, displaying a charged residue in the transmembrane portion and a cytoplasmic tail that lacks immunoreceptor tyrosine-based inhibitory motifs. The expression of NKG2H in the cell membrane through its association to CD94 and DAP-12 molecules supports that it could form part of the activatory CD94/Kp39 heterodimer present on K14B06 cells.  相似文献   

17.
Macrophages from Schistosoma mansoni-infected mice kill significant numbers of skin stage schistosomula and murine fibrosarcoma cells in vitro. In order to determine whether the macrophage tumoricidal and larvicidal activation observed in mice as a result of S. mansoni infection are mediated through T cell-dependent (lymphokine) or B cell-dependent (antibody or immune complex) mechanisms, the development of macrophage populations with cytotoxic activity against schistosome larvae or tumor cells was monitored in S. mansoni-infected nude or mu-suppressed mice. Whereas peritoneal cells from S. mansoni-infected congenitally athymic mice had no activity in either assay, cells from mu-suppressed S. mansoni-infected mice showed cytotoxic activity equivalent to that of cells from untreated S. mansoni-infected counterparts. Cells from mu-suppressed uninfected mice were not activated. The mu-suppressed animals had no detectable nonspecific IgM or specific antischistosome IgM, IgG, or IgE antibodies and showed a 90% reduction in numbers of splenic IgM+ cells upon fluorescence activated cell sorter analysis. These results indicate that antibody is not required for in vivo activation of macrophages during S. mansoni infection. Further experiments showed that lymphoid cells from S. mansoni infected mice respond in culture with various specific antigens (such as living or dead whole schistosomula or soluble adult worm antigens) by production of factors capable of activating macrophages from uninfected control mice to kill schistosomula or tumor cells in vitro. Macrophage-activating factors were produced by T cell-enriched, but not T cell-depleted or B cell-enriched, populations from spleens of schistosome-infected mice in response to schistosome antigen. Similar lymphokines may be responsible for the macrophage activation observed during chronic murine schistosomiasis. These observations emphasize the potential contribution of T cell-mediated immune mechanisms in resistance to S. mansoni infection.  相似文献   

18.
Human atopen-specific types 1 and 2 T helper cell clones.   总被引:11,自引:0,他引:11  
Eight representative T lymphocyte clones (TLC) randomly selected from previously described panels of CD4+ housedust mite Dermatophagoides pteronyssinus (Dp)-specific TLC from atopic and nonatopic donors were studied in more detail in a comparative investigation. The TLC from the atopic donors closely resembled murine type 2 Th (Th2) cells by secreting substantial IL-4, IL-5, IL-6, TNF-alpha, and granulocyte-macrophage (GM)-CSF, minimal IFN-gamma, and relatively little IL-2. In contrast, the nonatopic's TLC resembled murine type 1 Th (TH1) cells by secreting substantial IFN-gamma, IL-2, TNF-alpha, and GM-CSF, no IL-4, and little IL-5. A difference with murine Th1 cells was their additional secretion of IL-6. These cytokine profiles were consistent upon stimulation via different activation pathways including stimulation with specific Dp Ag, mitogenic lectins, and antibodies to CD2, CD3, or CD28. The observed differences in IL-2 secretion, however, were most evident upon stimulation with anti-CD28. If TLC cells were cultured with highly purified B cells and stimulated with anti-CD3 in the absence of exogenous IL-4, IgE synthesis was induced only in cultures with the atopics' Th2 clones, which could be completely abrogated by anti-IL-4. The mere presence of exogenous rIL-4, however, did not result in IgE synthesis, nor did unstimulated TLC cells alone. But if unstimulated TLC cells (that proved not to secrete detectable amounts of cytokines) were added together with rIL-4, again IgE synthesis was induced only in cultures with the atopics' Th2 clones, suggesting the involvement of an additional, as yet unidentified accessory helper function of the atopics' Th2 clones for IgE induction. Unstimulated Th2 clones showed a significantly higher expression of CD28 than the Th1 clones, but three days after stimulation, CD28 expression was elevated to comparable levels on both subsets. When added to B cells at this time point, together with rIL-4 and anti-IFN-gamma, still only the atopics' Th2 clones supported IgE synthesis, arguing against a role for CD28 in this accessory helper function. Whereas the atopics' Th2 clones were excellent helper cells for IgE induction, a unique property of the nonatopic's Th1 clones was their cytolytic activity toward autologous APC which could be induced by specific Dp Ag and by anti-CD3. The present data provide clear evidence for the existence of Th1 and Th2 cells in man.  相似文献   

19.
Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells   总被引:19,自引:0,他引:19  
CD4+ murine T cell clones, TH1 and TH2, can be distinguished by both functional responses and by their patterns of lymphokine secretion. Recently, a mAb, 23G2, which reacts with a subset of CD45 molecules (CD45R), has been reported to bind differentially to clones of TH1 and TH2 cells. In the present study, normal splenic T cells were analyzed for differences in 23G2-reactivity and were separated into two populations based on their density of CD45R (CD45Rhi and CD45Rlo). The CD45Rhi cells secrete more IL-2 than IL-4 after stimulation in vitro; the reverse is true for the CD45Rlo cells. Because neither population secretes only IL-2 or IL-4, we were unable to classify cells as TH1 or TH2. In vivo and in vitro analyses of the CD45Rhi and CD45Rlo cells suggest a lineage relationship between the two subsets that correlates with the degree of Ag exposure and the state of maturation of the mice. In newborn mice and mice raised under sterile conditions, splenic CD4+ T cells are predominantly CD45Rhi. Under conditions of increased antigenic exposure and maturation of the mice, CD45Rlo cells develop; after long term priming in vivo, the majority of specific Ag-reactive cells are CD45Rlo. Adoptive transfer studies using BALB/c nu/nu recipients demonstrate that CD45Rhi cells become CD45Rlo cells and that the recall response (IgG) to specific Ag is mediated by CD45Rlo cells. Taken together, these data indicate that the level of expression of CD45R on CD4+ T cells distinguishes virgin (CD45Rhi) from primed/memory (CD45Rlo) T cells in normal mice.  相似文献   

20.
It is now well established that the granulomatous inflammation surrounding the eggs of Schistosoma mansoni is mediated by Th lymphocytes. Our laboratory has recently cloned murine CD4+ Th cells specific for schistosomal egg Ag (SEA). In the current study, SEA-specific IL-2-producing Th1 clones were tested for their ability to mediate local delayed-type hypersensitivity (DTH) reactions, as well as granuloma formation in vivo. Marked delayed-onset erythema and induration developed in footpads of normal syngeneic hosts injected with SEA together with SEA-specific Th1 clones. Histologic examination of these lesions revealed typical, predominantly mononuclear, cell infiltrates characteristic of DTH reactions. Conversely, no reactions were observed in allogeneic hosts, in the absence of SEA, or with the use of a control Th1 clone. Moreover, adoptive transfer of cloned SEA-specific Th1 cells to normal syngeneic mice mediated, in 4 days, the formation of vigorous granulomas around schistosomal eggs embolized in the lungs. Such granulomas, which were quantitated by computer-assisted morphometric analysis, were comparable in size to those elicited by lung-embolized eggs in SEA/CFA-immunized mice. In contrast, significantly smaller granulomas were observed in normal recipients of eggs plus a control Th1 clone or of eggs alone. Our data indicate that Ag-specific, MHC-restricted, local DTH reactions, as well as egg granuloma formation in vivo, can be mediated by monoclonal SEA-specific Th1 cells. They suggest that T cell sensitization to only small numbers of SEA determinants may be sufficient to elicit the hepatointestinal granulomatous inflammation associated with schistosomiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号