首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cho S  Blackford JA  Simons SS 《Biochemistry》2005,44(9):3547-3561
The determinants of the partial agonist activity of most antisteroids complexed with steroid receptors are not well understood. We now examine the role of the N-terminal half of the glucocorticoid receptor (GR) including the activation domain (AF-1), the DNA binding site sequence, receptor contact with DNA, and coactivator binding on the expression of partial agonist activity in two cell lines for GRs bound by five antiglucocorticoids: dexamethasone mesylate (Dex-Mes), dexamethasone oxetanone (Dex-Ox), progesterone (Prog), deoxycorticosterone (DOC), and RU486. Using truncated GRs, we find that the N-terminal half of GR and the AF-1 domain are dispensable for the partial agonist activity of antiglucocorticoids. This contrasts with the AF-1 domain being required for the partial agonist activity of antisteroids with most steroid receptors. DNA sequence (MMTV vs a simple GRE enhancer) and cell-specific factors (CV-1 vs Cos-7) exert minor effects on the level of partial agonist activity. Small activity differences for some complexes of GAL4/GR chimeras with GR- vs GAL-responsive reporters suggest a contribution of DNA-induced conformational changes. A role for steroid-regulated coactivator binding to GRs is compatible with the progressively smaller increase in partial agonist activity of Dex-Mes > Prog > RU486 with added GRIP1 in CV-1 cells. This hypothesis is consistent with titration experiments, where low concentrations of GRIP1 more effectively increase the partial agonist activity of Dex-Mes than Prog complexes. Furthermore, ligand-dependent GRIP1 binding to DNA-bound GR complexes decreases in the order of Dex > Dex-Mes > Prog > RU486. Thus, the partial agonist activity of a given GR-steroid complex in CV-1 cells correlates with its cell-free binding of GRIP1. The ability to modify the levels of partial agonist activity through changes in steroid structure, DNA sequence, specific DNA-induced conformational changes, and coactivator binding suggests that useful variations in endocrine therapies may be possible by the judicious selection of these parameters to afford gene and tissue selective results.  相似文献   

4.
5.
6.
Coactivators such as TIF2 and SRC-1 modulate the positioning of the dose-response curve for agonist-bound glucocorticoid receptors (GRs) and the partial agonist activity of antiglucocorticoid complexes. These properties of coactivators differ from their initially defined activities of binding to, and increasing the total levels of transactivation by, agonist-bound steroid receptors. We now report that constructs of TIF2 and SRC-1 lacking the two activation domains (AD1 and AD2) have significantly less ability to increase transactivation but retain most of the activity for modulating the dose-response curve and partial agonist activity. Mammalian two-hybrid experiments show that the minimum TIF2 segment with modulatory activity (TIF2.4) does not interact with p300, CREB-binding protein, or PCAF, which also modulates GR activities. DRIP150 and DRIP205 have been implicated in coactivator actions but are unable to modulate GR activities. The absence of synergism by PCAF or DRIP150 with SRC-1 or TIF2, respectively, further suggests that these other factors are not involved. The ability of a TIF2.4 fragment (i.e. TIF2.37), which is not known to interact with proteins, to block the actions of TIF2.4 suggests that an unidentified binder mediates the modulatory activity of TIF2. Pull-down experiments with GST/TIF2.4 demonstrate a direct interaction of TIF2 with GR in a hormone-dependent fashion that requires the receptor interaction domains of TIF2 and is equally robust with agonists and most antiglucocorticoids. These observations, which are confirmed in mammalian two-hybrid assays, suggest that the capacity of coactivators such as TIF2 to modulate the partial agonist activity of antisteroids is mediated by the binding of coactivators to GR-antagonist complexes. In conclusion, the modulatory activity of coactivators with GR-agonist and -antagonist complexes is mechanistically distinct from the ability of coactivators to augment the total levels of transactivation and appears to involve the binding to both GR-steroid complexes and an unidentified TIF2-associated factor(s).  相似文献   

7.
Varying the concentration of selected factors alters the induction properties of steroid receptors by changing the position of the dose-response curve (or the value for half-maximal induction=EC(50)) and the amount of partial agonist activity of antisteroids. We now describe a rudimentary mathematical model that predicts a simple Michaelis-Menten curve for the multi-step process of steroid-regulated gene induction. This model suggests that steps far downstream from receptor binding to steroid can influence the EC(50) of agonist-complexes and partial agonist activity of antagonist-complexes. We therefore asked whether inhibitors of three possible downstream steps can reverse the effects of increased concentrations of two factors: glucocorticoid receptors (GRs) and Ubc9. The downstream steps (with inhibitors in parentheses) are protein deacetylation (TSA and VPA), DNA unwinding (CPT), and CTD phosphorylation of RNA polymerase II (DRB and H8). None of the inhibitors mimic or prevent the effects of added GRs. However, inhibitors of DNA unwinding and CTD phosphorylation do reverse the effects of Ubc9 with high GR concentrations. These results support our earlier conclusion that different rate-limiting steps operate at low and high GR concentrations versus high GR with Ubc9. The present data also suggest that downstream steps can modulate the EC(50) of GR-mediated induction, thus both supporting the utility of our mathematical model and widening the field of biochemical processes that can modify the EC(50).  相似文献   

8.
9.
Corticosterone is released from the adrenal cortex in response to stress, and binds to glucocorticosteroid receptors (GRs) and mineralocorticosteroid receptors (MRs) in the brain. Areas such as the dorsal hippocampus (DH), ventral hippocampus (VH) and medial prefrontal cortex (mPFC) all contain MRs and have been previously implicated in fear and/or memory.The purpose of the following experiments was to examine the role of these distinct populations of MRs in rats’ unconditioned fear and fear memory.The MR antagonist (RU28318) was microinfused into the DH, VH, or mPFC of rats. Ten minutes later, their unconditioned fear was tested in the elevated plus-maze and the shock-probe tests, two behavioral models of rat “anxiety.” Twenty-four hours later, conditioned fear of a non-electrified probe was assessed in rats re-exposed the shock-probe apparatus.Microinfusions of RU28318 into each of the three brain areas reduced unconditioned fear in the shock-probe burying test, but only microinfusions into the VH reduced unconditioned fear in the plus-maze test. RU28318 did not affect conditioned fear of the shock-probe 24 hr later.MRs in all three areas of the brain mediated unconditioned fear to a punctate, painful stimulus (probe shock). However, only MRs in the ventral hippocampus seemed to mediate unconditioned fear of the more diffuse threat of open spaces (open arms of the plus maze). In spite of the known roles of the hippocampus in spatial memory and conditioned fear memory, MRs within these sites did not appear to mediate memory of the shock-probe.  相似文献   

10.
11.
Corticosteroid hormones can enter the brain and bind to two receptor subtypes: the high affinity mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) with approximately 10-fold lower affinity. Under physiological conditions the degree of receptor occupation will range from a predominant MR occupation (at the beginning of the inactive period, under rest) to concurrent activation of MRs and GRs (at the circadian peak and after stress). With in vitro electrophysiological recording techniques we observed that neuronal excitability in the CA1 hippocampal field is under a long-term control of MR- and GR-mediated events. The predominant occupation of MRs is associated with a stable amino acid-carried synaptic transmission; calcium- and potassium-currents are small, as are the responses to biogenic amines. Occupation of GRs in addition to MRs results in a gradual failure of CA1 neurons to respond to repeated stimulation of amino acid-mediated input; ionic conductances and responses to biogenic amines are large. In general, electrical properties recorded when both MRs and GRs are unoccupied (i.e. after adrenalectomy) resemble the responses observed when both receptor types are activated. The corticosterone dependency of electrical properties is thus U-shaped. We conclude that MR occupation may be responsible for the maintenance of information processing in the CA1 field and the stability of the circuit. Additional activation of GRs will initially suppress synaptic activity, but may eventually result in an increased instability and even vulnerability of the neuronal networks.  相似文献   

12.
13.
14.
Zhou M  Kindt M  Joëls M  Krugers HJ 《PloS one》2011,6(10):e26220

Background

Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory.

Methodology/Principal Findings

Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point.

Conclusions/Significance

We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.  相似文献   

15.
16.
Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed.  相似文献   

17.
The Liver X receptors (LXRs) are members of the nuclear receptor family, that play fundamental roles in cholesterol transport, lipid metabolism and modulation of inflammatory responses. In recent years, the synthetic steroid N,N-dimethyl-3β-hydroxycholenamide (DMHCA) arised as a promising LXR ligand. This compound was able to dissociate certain beneficial LXRs effects from those undesirable ones involved in triglyceride metabolism. Here, we synthetized a series of DMHCA analogues with different modifications in the steroidal nucleus involving the A/B ring fusion, that generate changes in the overall conformation of the steroid. The LXRα and LXRβ activity of these analogues was evaluated by using a luciferase reporter assay in BHK21 cells. Compounds were tested in both the agonist and antagonist modes. Results indicated that the agonist/antagonist profile is dependent on the steroid configuration at the A/B ring junction. Notably, in contrast to DMHCA, the amide derived from lithocholic acid (2) with an A/B cis configuration and its 6,19-epoxy analogue 4 behaved as LXRα selective agonists, while the 2,19-epoxy analogues with an A/B trans configuration were antagonists of both isoforms. The binding mode of the analogues to both LXR isoforms was assessed by using 50?ns molecular dynamics (MD) simulations. Results revealed conformational differences between LXRα- and LXRβ-ligand complexes, mainly in the hydrogen bonding network that involves the C-3 hydroxyl. Overall, these results indicate that the synthetized DMHCA analogues could be interesting candidates for a therapeutic modulation of the LXRs.  相似文献   

18.
19.
In our study, we tried to find whether changes in expressions of inducible nitric oxide synthase (iNOS), corticosteroid (gluco-and mineralocorticoid) receptors (GRs and MRs, respectively), and bcl2 protein within the early stages of streptozotocin (STZ)-induced diabetes in Wistar rats can be involved in hippocampal dysfunction. Expressions of iNOS and bcl2 were studied using indirect immunofluorescence techniques, while GR and MR expressions were estimated using in situ mRNA hybridization. The concentrations of insulin, ACTH, and corticosterone in the blood serum were measured using ELISA kits. It was found that expression of iNOS in the CA2 and CA3 hippocampal areas increased significantly at day 3 after STZ injection, and corticosterone and ACTH levels in the serum increased at day 14. The iNOS expression was downregulated at day 14 of the development of diabetes. These changes were accompanied by significantly increased expression of GRs in the hippocampus. Neither bcl2 nor MR expression increased in the CA2 and CA3 hippocampal areas within the examined period of the development of diabetes. Thus, we first obtained proof of noticeable early molecular events in the rat hippocampus related to experimental diabetes. These events may be linked with diabetes-associated cognitive decline observed in patients suffering from diabetes. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 498–502, November–December, 2007.  相似文献   

20.
In the cultured acute lymphoblastic leukemic (ALL) cell line, clones of sensitive cells are killed by receptor-occupying concentrations of glucocorticoids. In addition, several types of resistance have been identified. The types of resistance are r- (glucocorticoid binding site loss), ract/l (activation labile receptors) and r+ly- (defective lysis mechanism). The two types of receptor mutants have been examined for the presence and expression of the glucocorticoid receptor (GR) gene. Southern blot analysis, using a full-length cDNA probe for human GR, shows that the gene in both is grossly intact. Examination of the expression of the gene by Northern blots reveals the presence of normal, 7-kb message in both types of receptor mutants, though in amounts somewhat reduced from wild-type. This report focuses on the activation labile mutants. Since characterization of these mutants suggests that they can bind ligand but not retain it during activation, we hypothesized that they would respond normally to a ligand that could not be lost during activation. This seems to be the case. When the covalent affinity ligand dexamethasone mesylate, itself a partial glucocorticoid agonist/antagonist, is used, the ract/l cells are killed to an extent corresponding to that evoked by a sub-optimal concentration of the full agonist dexamethasone. We conclude: (1) that the ract/l receptors can function to kill cells if provided a ligand that they do not lose during activation; (2) that the partial agonist activity of dexamethasone mesylate for cell killing is not due to release of a small amount of free dexamethasone; (3) that the poor agonist activity of dexamethasone mesylate receptor complexes suggests that the role of steroid is strictly to participate in conversion of the receptor to its DNA binding form, after which presence of the steroid actually interferes with proper receptor action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号