首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Is NF-kappaB the sensor of oxidative stress?   总被引:23,自引:0,他引:23  
N Li  M Karin 《FASEB journal》1999,13(10):1137-1143
  相似文献   

2.
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.  相似文献   

3.
4.
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an “antiaging” action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.  相似文献   

5.
6.
We report that α-tocotrienol quinone (ATQ3) is a metabolite of α-tocotrienol, and that ATQ3 is a potent cellular protectant against oxidative stress and aging. ATQ3 is orally bioavailable, crosses the blood-brain barrier, and has demonstrated clinical response in inherited mitochondrial disease in open label studies. ATQ3 activity is dependent upon reversible 2e-redox-cycling. ATQ3 may represent a broader class of unappreciated dietary-derived phytomolecular redox motifs that digitally encode biochemical data using redox state as a means to sense and transfer information essential for cellular function.  相似文献   

7.
The purpose of this study was to evaluate the effects of β-alanine supplementation on markers of oxidative stress. Twenty-four women (age: 21.7±2.1 years; VO2max: 2.6±0.3 l min(-1)) were randomly assigned, in a double-blind fashion, to a β-alanine (BA, 2×800 mg tablets, 3× daily; CarnoSyn?; n=13) or placebo (PL, 2×800 mg maltodextrin tablets, 3× daily; n=11) group. A graded oxygen consumption test (VO2max) was performed to evaluate VO2max, time to exhaustion, ventilatory threshold and establish peak velocity (PV). A 40-min treadmill run was used to induce oxidative stress. Total antioxidant capacity, superoxide dismutase, 8-isoprostane (8ISO) and reduced glutathione were measured. Heart rate and ratings of perceived exertion were recorded during the 40 min run. Separate three- [4×2×2; acute (base vs. IP vs. 2 vs. 4 h)×chronic (pre- vs. post-)×treatment (BA vs. PL)] and two- [2×2; time (pre-supplement vs. post-supplement)×treatment (BA vs. PL)] way ANOVAs were used for analyses. There was a significant increase in VO2max (p=0.009), independent of treatment, with no significant changes in TTE (p=0.074) or VT (p=0.344). Ratings of perceived exertion values were significantly improved from pre- to post-supplementation for the BA group only at 40 min (p=0.02). The ANOVA model demonstrated no significant treatment effects on oxidative stress. The chronic effects of BA supplementation demonstrated little antioxidant potential, in women, and little influence on aerobic performance assessments.  相似文献   

8.
Mounting evidence supports Harman’s hypothesis that aging is caused by free radicals and oxidative stress. Although it is known that oxidant species are produced during metabolic reactions, it is largely unknown which factor(s), of physiological or pathophysiological significance, modulate their production in vivo. In this hypothesis paper, it is postulated that hyperinsulinemia may have such function and therefore promote aging, independently of elevations of glycemia. Hyperinsulinemia is secondary to impaired insulin stimulated glucose metabolism at the level of skeletal muscle (insulin resistance) and is seen in about one third of glucose tolerant humans following dietary carbohydrate intake. If other insulin-stimulated (or inhibited) pathways retain normal sensitivity to the hormone, hyperinsulinemia could, by its effects on antioxidative enzymes and on free radical generators, enhance oxidative stress. Other proaging effects of insulin involve the inhibition of proteasome and the stimulation of polyunsaturated fatty acid (PUFA) synthesis and of nitric oxide (NO). The hypothesis that hyperinsulinemia accelerates aging also offers a metabolic explanation for the life-prolonging effect of calorie restriction and of mutations decreasing the overall activity of insulin-like receptors in the nematode Caenorhabditis elegans.  相似文献   

9.
10.
The mechanisms leading to degeneration of melanized dopaminergic neurons in the brain stem, and particularly in the substantia nigra zona compacta (SNZC) in patients with Parkinson's disease (PD) are still unknown. Demonstration of increased iron Fe(III) in SNZC of PD brain has suggested that Fe-melanin interaction may contribute to oxidative neuronal damage. Energy dispersive X-ray electron microscopic analysis of the cellular distribution of trace elements revealed significant Fe-peaks, similar to those of a synthetic melanin-Fe(III) complex in intracytoplasmic electron-dense neuromelanin granules of SNZC neurons, with highest levels in a case of PD and Alzheimer's disease (AD). No Fe increase was found in Lewy bodies or in SN neurons of control specimens. The relevance of chemical reactions of dopamine (DA), 5-hydroxydopamine (5-OHDA), and 6-hydroxydopamine (6-OHDA) with Fe(III) and with dioxygen for the pathogenesis of PD was investigated. An initiating mechanism related to interaction between Fe and neuromelanin is suggested which results in accumulation of Fe(III) and a continuous production of cytotoxic species inducing a cascade of pathogenic reactions ultimately leading to neuronal death.  相似文献   

11.
We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II. Although the experimental conditions ensured that the four studied stress conditions resulted in approximately the same extent of PS II inactivation, they clearly followed different molecular mechanisms. Our results show that singlet oxygen production in inactivated PS II reaction centres is a unique characteristic of photoinhibition by excess PAR. Neither the accumulation of inactive PS II reaction centres (as in UV-B or chilling stress), nor photo-oxidative damage of PS II (as in paraquat stress) is able to produce the special oxidizing conditions characteristic of acceptor-side-induced photoinhibition.  相似文献   

12.
13.
To assess whether molecular oxygen and oxidative stress contribute to chloroquine activity, we cultivated strains of Plasmodium falciparum in erythrocytes with carboxyhemoglobin and an atmosphere containing 2% CO, 5% CO(2) and 93% N(2). Results indicate that, contrary to common belief, oxygen is not involved in the activity of chloroquine. Reactive radicals formation is suggested.  相似文献   

14.
Liu  Xiaomei  Yi  Mingji  Jin  Rong  Feng  Xueying  Ma  Liang  Wang  Yanxia  Shan  Yanchun  Yang  Zhaochuan  Zhao  Baochun 《Molecular biology reports》2020,47(5):3735-3744
Molecular Biology Reports - In this study, a mice model of obesity-asthma was established. We investigated the correlation between oxidative stress and NF-κB signaling pathway in the lung...  相似文献   

15.
16.
The development of nontoxic but effective radioprotectors is needed because of the increasing risk of human exposure to ionizing radiation. We have reported that α-lipoic acid confers considerable radio-protective effect in mouse tissues when given prior to x-irradiation. In the present study, α-lipoic acid supplementation prior to x-irradiation with 4 and 6 Gy significantly inhibited the radiation-induced decline in total antioxidant capacity (TAC) of plasma. Radiation-induced decline in non-protein sulfhydryl content (NPSH) of different tissues, namely, brain, liver, spleen, kidney, and testis, was also ameliorated significantly at both 4 and 6 Gy doses. Maximal augmentation of radiation-induced protein carbonyl content was observed in spleen followed by brain, kidney, testis, and liver. Maximal protection in terms of carbonyl content was observed in spleen (116%) at 6 Gy dose, and minimal protection was found in liver (22.94%) at 4 Gy dose. Maximal increase in MDA (malondialdehyde) content was observed in brain, followed by testis, spleen, kidney, and liver. Protection by α-lipoic acid pretreatment in terms of MDA content was maximal in brain (51.67%) and minimal in spleen. The findings support the idea that α-lipoic acid is a free-radical scavenger and a potent antioxidant.  相似文献   

17.
18.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

19.
The radioprotective effect of geraniin, a tannin compound isolated from Nymphaea tetragona Georgi var. (Nymphaeaceae), against γ-radiation-induced damage was investigated in Chinese hamster lung fibroblast (V79-4) cells. Geraniin recovered cell viability detected by MTT test and colony formation assay, which was compromised by γ-radiation, and reduced the γ-radiation-induced apoptosis by the inhibition of loss of the mitochondrial membrane potential. Geraniin protected cellular components (lipid membrane, cellular protein, and DNA) damaged by γ-radiation, which was detected by lipid peroxidation, protein carbonyl formation, and comet assay. Geraniin significantly reduced the level of intracellular reactive oxygen species generated by γ-radiation, which was detected using spectrofluorometer, flow cytometer, and confocal microscope after 2′,7′-dichlorodihydrofluorescein diacetate staining. Geraniin normalized the superoxide dismutase and catalase activities, which were decreased by γ-radiation. These results suggest that geraniin protects cells against radiation-induced oxidative stress via enhancing of antioxidant enzyme activities and attenuating of cellular damage.  相似文献   

20.
Objective: This study aimed to evaluate the activity of delta-aminolevulinate dehydratase (δ-ALA-D) and oxidative stress biomarkers in pregnant women with gestational diabetes mellitus (GDM), in order to demonstrate the involvement of oxidative stress in this condition, which presents pathophysiology still undetermined.

Methods: δ-ALA-D activity, lipid peroxidation estimated as the levels of thiobarbituric acid reactive substances (TBARS), protein (P-SH) and non-protein thiol (NP-SH) content, catalase (CAT) activity and concentration of vitamin C (VIT C) in samples of pregnant women with GDM (n?=?48) and in healthy pregnant women (n?=?30), who constituted the control group.

Results: The δ-ALA-D activity was significantly lower in pregnant women with GDM compared to controls, as well as levels of thiols, VIT C and CAT activity. Lipid peroxidation was higher in GDM group.

Discussion: The results suggest that the main factor for the increase in oxidative stress and reduced δ-ALA-D activity in diabetic pregnant women is gestational hyperglycemic environment, which changed the redox balance and interfered on mechanism of the δ-ALA-D activity in relation to normoglycemic pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号