首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetylates N-acetylglucosaminyl residues and by subsequent treatment with nitrous acid at pH 3.9 results in the formation of a mixture of oligosaccharides which was further resolved into sulfate-enriched oligosaccharides with antiproliferative activity in an in vitro bioassay system. A decasaccharide and dodeca/tetradecasaccharide fraction had a significantly higher antiproliferative effect on arterial smooth muscle cells than the native heparan sulfate molecule. The antiproliferative oligosaccharides have a sulfate content of 0.9 to 1.2 sulfate groups/disaccharide unit and consist of 60 to 70% monosulfated, disulfated, and trisulfated disaccharide units. Up to 32% of the sulfate groups were in 2-position of the uronic acid. In contrast, nitrous acid degradation of heparan sulfate at pH 1.5, which cleaves glycosidic linkages of N-sulfoglucosaminyl residues, results in the formation of sulfate-poor or sulfate-free oligosaccharides without antiproliferative potency. The results indicate that (a) heparan sulfate has a heterogeneous molecular organization where sulfate-rich domains are separated by sulfate-poor sequences and that (b) the antiproliferative activity of heparan sulfate resides in domains enriched with 2-O-sulfated uronic acid residues.  相似文献   

2.
The disaccharide repeating-units of heparan sulfate   总被引:11,自引:0,他引:11  
Five disaccharides have been isolated after degradation of heparan sulfate by heparinase (heparin lyase) and heparitinase (heparan sulfate lyase) and are suggested to represent the repeating units of the polysaccharide. They all contain a 4,5-unsaturated uronic acid residue and are: (a) A trisulfated disaccharide that is apparently identical to a disaccharide repeating-unit of heparin; (b) a disulfated disaccharide that seems unique for heparan sulfate and contains 2-deoxy-2-sulfamidoglucose and uronic acid sulfate residues; (c) a nonsulfated disaccharide containing a 2-acetamido-2-deoxyglucose residue; (d) a monosulfated disaccharide containing a 2-acetamido-2-deoxyglucose sulfate residue; and (e) a monosulfated disaccharide containing a 2-deoxy-2-sulfamidoglucose residue. Yields of these disaccharides from different heparan sulfate fractions are discussed in relation to possible arrangements of these units in the intact polymer.  相似文献   

3.
Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. Here, we chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential modifications of CS with a series of CS sulfotransferases revealed their distinct features, including their substrate specificities. Reactions with chondroitin polymerase generated non-sulfated chondroitin, and those with C4ST-1 and C6ST-1 generated uniformly sulfated CS containing >95% 4S and 6S units, respectively. GalNAc4S-6ST and UA2ST generated highly sulfated CS possessing ∼90% corresponding disulfated disaccharide units. Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Surprisingly, sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ∼29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS antibodies, and with CS-binding molecules such as midkine and pleiotrophin. Chemo-enzymatic synthesis enables the generation of CS chains of the desired lengths, compositions, and distinct structures, and the resulting library will be a useful tool for studies of CS functions.  相似文献   

4.
Heparin and heparan sulfate fragments, obtained by bacterial heparinase and heparitinases, bearing an unsaturation at C4-C5 of the uronic acid moiety, are able to produce up to 80% reduction of the cytosolic calcium of smooth muscle cell lines. Unsaturated disaccharides from chondroitin sulfate, dermatan sulfate, and hyaluronic acid are inactive, indicating that, besides the unsaturation of the uronic acid, a vicinal 1 --> 4 glycosidic linkage is needed. An inverse correlation between the molecular weight and activity is observed. Thus, the ED(50) of the N-acetylated disaccharide derived from heparan sulfate (430 Da) is 88 microm compared with 250 microm of the trisulfated disaccharide (650 Da) derived from heparin. Except for enoxaparin (which contains an unsaturation at the non-reducing end and 1 --> 4 glycosidic linkage), other low molecular weight heparins and native heparin are practically inactive in reducing the cytosolic calcium levels. Thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor), vanadate (cytoplasmic membrane Ca(2+)-ATPase inhibitor), and nifedipine and verapamil (Ca(2+) channel antagonists) do not interfere with the effect of the trisulfated disaccharide upon the decrease of the intracellular calcium. A significant decrease of the activity of the trisulfated disaccharide is observed by reducing extracellular sodium, suggesting that the fragments might act upon the Na(+)/Ca(2+) exchanger promoting the extrusion of Ca(2+). This was further substantiated by binding experiments and circular dichroism analysis with the exchanger inhibitor peptide.  相似文献   

5.
Cultured arterial smooth muscle cells synthesize a cell-associated heparan sulfate proteoglycan which consists of a 92 kDa core protein with 3 to 4 heparan sulfate side chains covalently attached. Biosynthesis of the cell-associated heparan sulfate proteoglycan was compared in proliferating and in non-dividing vascular smooth muscle cells which are preincubated in the presence of [35]sulfate or a combination of [35S]methionine and [3H]glucosamine. The Mr of the core protein was identical in either growth state, but changes in the structure of the heparan sulfate side chains were observed. Non-dividing (postconfluent) arterial smooth muscle cells form longer heparan sulfate chains with a higher proportion of hydrophobic (N-acetyl) groups than proliferating (preconfluent) cells as judged from gel filtration experiments, hydrophobic interaction chromatography and heparitinase degradation. An enzyme preparation from proliferating cells catalyzes deacetylation and N-sulfation of heparan sulfate at a 5-fold higher activity than from non-dividing cells. Cell density-dependent structural differences of heparan sulfate are related to the finding that heparan sulfate isolated from non-dividing cells has a 10-fold higher antiproliferative potency than heparan sulfate from proliferating (preconfluent) cells.  相似文献   

6.
Cultured arterial smooth muscle cells synthesize two proteoheparan sulfate species. One is found associated with the cells, whereas the other is excreted into the medium. The two proteoheparan sulfates have similar hydrodynamic sizes but differ in the Mr of their core proteins. The cell-associated proteoheparan sulfate has a Mr of 92,000 while that of soluble proteoheparan sulfate is 38,000. The cell-associated and the soluble proteoheparan sulfate species differ in their ability to suppress the proliferation of smooth muscle cells. When added to the culture medium 2-5 micrograms/ml of the cell-associated and 20-25 micrograms/ml of the soluble proteoheparan sulfate species inhibit the growth of smooth muscle cells half maximally. The antiproliferative potency of both species resides in the heparan sulfate chains. Commercially available heparin has no antiproliferative effect and is not able to prevent the antiproliferative action of cellular heparan sulfate. In contrast to heparin, none of the heparan sulfate preparations has anticoagulant activity. Smooth muscle cells endocytose the soluble heparan sulfate at a rate three to four times higher than that of the cell-associated heparan sulfate. The data suggest that the cell-associated and the soluble proteoheparan sulfate species are separate and possibly genetically distinct molecules. Furthermore, the structural determinants for antiproliferative activity and the recognition sites for endocytotic uptake appear to be different.  相似文献   

7.
Glycosaminoglycans were prepared from the Engelbreth-Holm-Swarm mouse tumor. Enzymatic analysis demonstrated heparan sulfate (95.8%) and chondroitinase ABC-sensitive galactosaminoglycans (4.2%). HPLC analysis of the disaccharide units showed that heparan sulfate chains were undersulfated on average, comprising approximately 30% nonsulfated and 60% N-sulfated disaccharide units with small proportions of other monosulfated and disulfated disaccharide units. In contrast, galactosaminoglycan chains were oversulfated, containing an appreciable proportion (15%) of a 4,6-disulfated (so-called E-type) disaccharide unit in addition to 51% of a 4-sulfated, 22% of a 6-sulfated, and 11% of a nonsulfated disaccharide unit. The significance of the oversulfated disaccharide structure is discussed in relation to the possible regulation of functions of hybrid proteoglycans from which the galactosaminoglycan chains are derived.  相似文献   

8.
Sodium spirulan (Na-SP) is a sulfated polysaccharide with M(r) approximately 220,000 isolated from the blue-green alga Spirulina platensis. The polysaccharide consists of two types of disaccharide repeating units, O-hexuronosyl-rhamnose (aldobiuronic acid) and O-rhamnosyl-3-O-methylrhamnose (acofriose) with sulfate groups, other minor saccharides and sodium ion. Since vascular smooth muscle cell proliferation is a crucial event in the progression of atherosclerosis, we investigated the effect of Na-SP on the proliferation of bovine arterial smooth muscle cells in culture. It was found that Na-SP markedly inhibits the proliferation without nonspecific cell damage. Either replacement of sodium ion with calcium ion or depolymerization of the Na-SP molecule to M(r) approximately 14,700 maintained the inhibitory activity, however, removal of sodium ion or desulfation markedly reduced the activity. Heparin and heparan sulfate also inhibited vascular smooth muscle cell growth but their effect was weaker than that of Na-SP; dextran sulfate, chondroitin sulfate, dermatan sulfate and hyaluronan failed to inhibit the cell growth. The present data suggest that Na-SP is a potent inhibitor of arterial smooth muscle cell proliferation, and the inhibitory effect requires a certain minimum sequence of polysaccharide structure whose molecular conformation is maintained by sodium ion bound to sulfate group.  相似文献   

9.
Thrombin-inhibitory activity of whale heparin oligosaccharides   总被引:1,自引:0,他引:1  
Whale heparin was partially digested with a purified heparinase and the oligosaccharide fractions with 8-20 monosaccharide units were isolated from the digest by gel filtration on Sephadex G-50, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. A marked difference in the inhibitory activity for thrombin in the presence of antithrombin III was observed between the high-affinity fractions for antithrombin III of octasaccharide approximately hexadecasaccharide and those of octadecasaccharide approximately eicosasaccharide. The disaccharide compositions of these hexadeca-, octadeca-, and eicosasaccharides were analyzed by high-performance liquid chromatography after digestion with a mixture of purified heparitinases 1 and 2 and heparinase. The analytical data indicated that the proportions of trisulfated disaccharide (IdUA(2S)alpha 1----4GlcNS(6S)) and disulfated disaccharide (UA1----4GlcNS(6S)) increased with the manifestation of high thrombin-inhibitory activity, while that of monosulfated disaccharide (UA1----4GlcNS) decreased. The present observations, together with those so far reported, suggest that the presence of the former structural elements, specifically IdUA(2S)alpha 1----4GlcNS(6S), as well as the antithrombin III-binding pentasaccharide at the proper positions in the molecules of whale heparin oligosaccharides is essential for the manifestation of high inhibitory activity for thrombin in the presence of antithrombin III. The structural bases for the manifestation of the anticoagulant activity of whale and porcine heparins and their oligosaccharides are also discussed.  相似文献   

10.
Abstract: We have characterized the structural properties of heparan sulfates from brain and other tissues after de-polymerization with a mixture of three heparin and heparan sulfate lyases from Flavobacterium heparinum. The resulting disaccharides were separated by HPLC and identified by comparison with authentic standards. In rat, rabbit, and bovine brain, 46–69% of the heparan sulfate disaccharides are N-acetylated and unsulfated, and 17–21% contain a single sulfate residue in the form of a sulfoamino group. In rabbit, bovine, and 1-day postnatal rat brain, disaccharides containing both a sulfated uronic acid and N-sulfate account for an additional 10–14%, together with smaller and approximately equall proportions (5–9%) of mono-, di-, and trisulfated disaccharides having sulfate at the 6-position of the glucosamine residue. Kidney and lung heparan sulfates are distinguished by high concentrations of disaccharides containing 6-sulfated N-acetylglucosamine residues. In chromaffin granules, the catecholamine-and peptide-storing organelles of adrenal medulla, where heparan sulfate accounts for a minor portion (5–10%) of the glycosaminoglycans, we have determined that bovine chromaffin granule membranes contain heparan sulfate in which almost all of the disaccharides are either unsulfated (71 %) or monosulfated (18%). In sympathetic nerves, norepinephrine is stored in large densecored vesicles that in biochemical composition and properties closely resemble adrenal chromaffin granules. However, in contrast to chromaffin granules, heparan sulfate accounts for ~ 75% of the total glycosaminoglycans in large dense-cored vesicles and more closely resembles heparin, insofar as it contains only 21 % unsulfated disaccharides, 10% mono-and disulfated disaccharides, and 69% trisulfated disaccharides. Our results therefore reveal significant differences among heparan sulfates from different sources, supporting other evidence that structural variations in heparan sulfate may be related to specific biological functions, such as the switching in the neural response from fibroblast growth factor-2 to fibro-blast growth factor-1 resulting from developmental changes in the glycosaminoglycan chains of a heparan sulfate proteoglycan.  相似文献   

11.
Heparan sulfate has been isolated for the first time from the mosquito Anopheles stephensi, a known vector for Plasmodium parasites, the causative agents of malaria. Chondroitin sulfate, but not dermatan sulfate or hyaluronan, was also present in the mosquito. The glycosaminoglycans were isolated, from salivary glands and midguts of the mosquito in quantities sufficient for disaccharide microanalysis. Both of these organs are invaded at different stages of the Plasmodium life cycle. Mosquito heparan sulfate was found to contain the critical trisulfated disaccharide sequence, -->4)beta-D-GlcNS6S(1-->4)-alpha-L-IdoA2S(1-->, that is commonly found in human liver heparan sulfate, which serves as the receptor for apolipoprotein E and is also believed to be responsible for binding to the circumsporozoite protein found on the surface of the Plasmodium sporozoite. The heparan sulfate isolated from the whole mosquito binds to circumsporozoite protein, suggesting a role within the mosquito for infection and transmission of the Plasmodium parasite.  相似文献   

12.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

13.
Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.  相似文献   

14.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   

15.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

16.
A 3'-phosphoadenylylsulfate:chondroitin sulfotransferase (EC 2.8.2.5) was purified to homogeneity (about 760-fold) from the cytosolic fraction of calf arterial tissue by Con A-Sepharose, ion exchange and affinity chromatography. The enzyme has a molecular mass of 38000 Da, optimal activity at pH 6.0 (100%) and 7.25 (75%), requires divalent cations for maximal activity (Mn2+ greater than Mg2+, Ca2+) and exhibits specificity towards desulfated chondroitin sulfate and oligosaccharides derived therefrom. The enzyme transfers sulfate groups from [35S]phosphoadenylylsulfate exclusively to C-6 OH groups of N-acetylgalactosamine units of the acceptor substrates. Maximal sulfate transfer occurs at 2mM chondroitin disaccharide units (100%), the transfer rates decreasing with decreasing chain length in the order deca (55%), octa (17%) and hexasaccharides (4%). Lineweaver-Burk plots revealed equal maximal velocities for chondroitin, deca-, octa- and hexasaccharide, but decreasing Km values. Chondroitin 4-sulfate has 21% of the acceptor potency exhibited by chondroitin, whereas dermatan sulfate, heparan sulfate and hyaluronate and the chondroitin tetrasaccharide showed no acceptor properties. Analysis of the reaction products formed by prolonged enzymatic sulfation of a reduced chondroitin hexasaccharide [GlcA-GalNAc]2-GlcA-GalNAc-ol revealed that the preterminal N-acetylgalactosamine from the non-reducing end and the internal N-acetylgalactosamine but not the N-acetylgalactosaminitol were sulfated and that no hexasaccharide disulfate was formed by the action of chondroitin 6-sulfotransferase. Chondroitin 6-sulfotransferase is considered to possess a binding region capable of accommodating a nonsulfated oligosaccharide sequence of at least six sugars and is believed to act in the course of chondroitin sulfate synthesis in cooperation with, but shortly after, the enzymes involved in the chain elongation reaction.  相似文献   

17.
Cultured arterial smooth muscle cells synthesize and secrete two types of sulfated proteoglycans designated as proteoglycan A and proteoglycan B. Proteoglycan A has been characterized as chondroitin sulfate-rich, whereas proteoglycan B was found to be dermatan sulfate-rich [Schmidt, A. & Buddecke, E. (1985) Eur. J. Biochem. 153, 260-273]. During the logarithmic growth phase, arterial smooth muscle cells incorporated about 3 times more [35S]sulfate into the total proteoglycans secreted into the culture medium than did non-dividing cells. When arterial smooth muscle cells stopped proliferating the ratio of [35S]proteoglycan A/B increased. No differences were detected in the respective molecular and chemical characteristics of purified proteoglycans A and B isolated from both proliferating and non-dividing cells. Regardless of the growth phase proteoglycan A had a molecular mass of about 280 kDa and contained 8-9 chondroitin sulfate-rich side chains. Proteoglycan B had a molecular mass of about 180 kDa and contained 6-7 dermatan sulfate-rich side chains. The [35S]methionine-labelled protein cores of proteoglycan A and B had a molecular mass of about 48 kDa, but were distinguishable by their specific reactions to monospecific antibodies. Proliferating cells endocytosed proteoglycan B at a rate up to 100% higher than that of non-dividing cells. In all growth phases proteoglycan A was endocytosed at a 10-fold lower rate than proteoglycan B.  相似文献   

18.
The mechanism and inhibitors of Chlamydia trachomatis serovar L2 infection of eukaryotic host cells were studied using a tissue culture model infection system. Potent inhibition of infectivity was observed when elementary bodies (EBs) were exposed to heparin or when HeLa 229 cells were treated with heparinase. No significant inhibition was seen the other way around. The same potent inhibition was observed when EBs were exposed to chemically 2-O-desulfated heparin (2-ODS heparin), which is composed of repeating disaccharide units of IdoA-GlcNS(6S), but not when exposed to chemically 6-ODS heparin or completely desulfated and N-resulfated heparin, which is composed of repeating disaccharide units of IdoA(2S)-GlcNS or IdoA-GlcNS, respectively. The inhibitory effects of 2-ODS heparin could be seen only with oligosaccharides longer than dodecasaccharides. The mutant Chinese hamster ovary (CHO) cell line 677, which is deficient in the biosynthesis of heparan sulfate, was less sensitive to C. trachomatis infection than were wild-type CHO cells. F-17 cells, deficient in 2-O-sulfation of heparan sulfate, had the same sensitivity to infection as wild-type CHO cells did. These data suggest that infection of host cells by EBS results from the specific binding of ligand molecules with affinity for heparin on the EB surface to heparan sulfate proteoglycans on the host cell surface. This binding may depend on host cell heparan sulfate chains that are 6-O-sulfated and longer than dodecasaccharides. The 2-ODS heparin oligosaccharides may be a potential agent for the prevention of C. trachomatis infection.  相似文献   

19.
The total degradation of heparin by the joint action of a purified heparinase and a heparitinase from Flavobacterium heparinum is reported. The heparinase acts directly upon heparin, yielding 52% of a trisulfated disaccharide (O-(alpha-L-ido-4-enepyranosyluronic acid 2-sulfate)-(1leads to 4)-2sulfoamino-2-deoxy-D-glucose 6-sulfate) and 40% of a tetrasaccharide besides small amounts of hexa- and disaccharides. The tetrasaccharide is in turn completely degraded by the heparitinase, forming trisulfated disaccharide and disulfated disaccharide (O-(alpha-D-glyco-4-enepyranosyluronic acid)-(1leads to 4)-2-sulfoamino-2-deoxy-D-glucose 6-sulfate) in equal amounts. These and other results indicate that the tri- and disulfated disaccharides are linked alternately, in a proportion of 3:1, respectively. The primary structure of heparin and the mode of action of the heparinase and the heparitinase are proposed based on the analysis of the different products formed by the action of the enzymes.  相似文献   

20.
Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO4) (E unit) and CS containing GlcA(2SO4)-GalNAc(6SO4) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15–17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号