首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The fluorescence lifetimes of lipofuscin fluorophores contained in chloroform extracts from retinal pigment epithelium (RPE) of human cadaver eyes without signs of pathology were evaluated by single photon counting. The comparison of fluorescence lifetimes of N-retinylidene-N-retinylethanolamine (A2E) and its photooxidation and photodegradation products has been carried out. It was shown that the contribution of A2E to the total fluorescence of chloroform extract from lipofuscin granules is not major. The results are important for the improvement of noninvasive diagnostic method of degenerative diseases of the retina and RPE—fundus autofluorescence (FAF).  相似文献   

2.
The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4(-/-) than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane.  相似文献   

3.
In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5(-/-) RPE but not in neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants, grapes or marigold extract containing macular pigments lutein/zeaxanthin, was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5(-/-) mice. Acute generation of HNE adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of a physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet.  相似文献   

4.
对幼年、成年与老年Wistar大鼠大脑躯感皮质的胶质细胞的电镜研究表明:老年大鼠胶质细胞脂褐素增加和卫星化增多;在胶质与神经元胞体之间,神经元的胞质膜和胶质贴近处出现表面下复合器的情况也增多。星形胶质细胞还有胞质肥大和微丝增多的倾向。在个别老年动物中见到一种特殊的多层平行膜板状髓鞘样结构出现于胶质与神经元胞体之间。  相似文献   

5.
The retinal pigment epithelium (RPE) is juxtaposed to the overlying sensory retina, and supports the function of the visual system. Among the tasks performed by the RPE are phagocytosis and processing of outer photoreceptor segments through lysosome-derived organelles. These degradation products, stored and referred to as lipofuscin granules, are composed partially of bisretinoids, which have broad fluorescence absorption and emission spectra that can be detected clinically as fundus autofluorescence with confocal scanning laser ophthalmoscopy (cSLO). Lipofuscin accumulation is associated with increasing age, but is also found in various patterns in both acquired and inherited degenerative diseases of the retina. Thus, studying its pattern of accumulation and correlating such patterns with changes in the overlying sensory retina are essential to understanding the pathophysiology and progression of retinal disease. Here, we describe a technique employed by our lab and others that uses cSLO in order to quantify the level of RPE lipofuscin in both healthy and diseased eyes.  相似文献   

6.
The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.  相似文献   

7.

Background

The absence or deficiency of melanin as in albinos, has detrimental effects on retinal development that include aberrant axonal projections from eye to brain and impaired vision. In pigmented retinal pigment epithelium (RPE), dihydroxyphenalanine (L-Dopa), an intermediate in the synthetic path for melanin, has been hypothesized to regulate the tempo of neurogenesis. The time course of expression of retinal L-Dopa, whether it is harbored exclusively in the RPE, the extent of deficiency in albinos compared to isogenic controls, and whether L-Dopa can be restored if exogenously delivered to the albino have been unknown.

Methodology/Principal Findings

L-Dopa and catecholamines including dopamine extracted from retinas of pigmented (C57BL/6J) and congenic albino (C57BL/6J-tyrc2j) mice, were measured throughout development beginning at E10.5 and at maturity. L-Dopa, but not dopamine nor any other catecholamine, appears in pigmented retina as soon as tyrosinase is expressed in RPE at E10.5. In pigmented retina, L-Dopa content increases throughout pre- and postnatal development until the end of the first postnatal month after which it declines sharply. This time course reflects the onset and completion of retinal development. L-Dopa is absent from embryonic albino retina and is greatly reduced in postnatal albino retina compared to pigmented retina. Dopamine is undetectable in both albino and pigmented retinas until after the postnatal expression of the neuronal enzyme tyrosine hydroxylase. If provided to pregnant albino mothers, L-Dopa accumulates in the RPE of the fetuses.

Conclusions

L-Dopa in pigmented RPE is most abundant during development after which content declines. This L-Dopa is not converted to dopamine. L-Dopa is absent or at low levels in albino retina and can be restored to the RPE by administration in utero. These findings further implicate L-Dopa as a factor in the RPE that could influence development, and demonstrate that administration of L-Dopa could be a means to rescue developmental abnormalities characteristic of albinos.  相似文献   

8.
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.  相似文献   

9.
Lipofuscin accumulates with age within secondary lysosomes of retinal pigment epithelial (RPE) cells of humans and many animals. The autofluorescent lipofuscin pigment has an excitation maximum within the range of visible blue light, while it is emitting in the yellow-orange area. This physico-chemical property of the pigment indicates that it may have a photo-oxidative capacity and, consequently, then should destabilize lysosomal membranes of blue-light exposed RPE. To test this hypothesis, being of relevance to the understanding of age-related macular degeneration, cultures of heavily lipofuscin-loaded RPE cells were blue-light–irradiated and compared with respect to lysosomal stability and cell viability to relevant controls. To rapidly convert primary cultures of RPE, obtained from neonatal rabbits, into aged, lipofuscin-loaded cells, they were allowed to phagocytize artificial lipofuscin that was prepared from outer segments of bovine rods and cones. Following blue-light irradiation, lysosomal membrane stability was measured by vital staining with the lysosomotropic weak base, and metachromatic fluorochrome, acridine orange (AO). Quantifying red (high AO concentration within intact lysosomes with preserved proton gradient over their membranes) and green fluorescence (low AO concentration in nuclei, damaged lysosomes with decreased or lost proton gradients, and in the cytosol) allowed an estimation of the lysosomal membrane stability after blue-light irradiation. Cellular viability was estimated with the delayed trypan blue dye exclusion test. Lipofuscin-loaded blue-light–exposed RPE cells showed a considerably enhanced loss of both lysosomal stability and viability when compared to control cells. It is concluded that the accumulation of lipofuscin within secondary lysosomes of RPE sensitizes these cells to blue light by inducing photo-oxidative alterations of their lysosomal membranes resulting in a presumed leakage of lysosomal contents to the cytosol with ensuing cellular degeneration of apoptotic type. The suggested mechanism may have bearings on the development of age-related macular degeneration. © 1997 Elsevier Science Inc.  相似文献   

10.
Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.   总被引:4,自引:0,他引:4  
Lipofuscin accumulates with age in a variety of highly metabolically active cells, including the retinal pigment epithelium (RPE) of the eye, where its photoreactivity has the potential for cellular damage. The aim of this study was to assess the phototoxic potential of lipofuscin in the retina. RPE cell cultures were fed isolated lipofuscin granules and maintained in basal medium for 7 d. Control cells lacking granules were cultured in an identical manner. Cultures were either maintained in the dark or exposed to visible light (2.8 mWcm2) at 37 degrees C for up to 48 h. Cells were subsequently assessed for alterations in cell morphology, cell viability, lysosomal stability, lipid peroxidation, and protein oxidation. Exposure of lipofuscin-fed cells to short wavelength visible light (390-550 nm) caused lipid peroxidation (increased levels of malondialdehyde and 4-hydroxy-nonenal), protein oxidation (protein carbonyl formation), loss of lysosomal integrity, cytoplasmic vacuolation, and membrane blebbing culminating in cell death. This effect was wavelength-dependent because light exposure at 550 to 800 nm had no adverse effect on lipofuscin-loaded cells. These results confirm the photoxicity of lipofuscin in a cellular system and implicate it in cell dysfunction such as occurs in ageing and retinal diseases.  相似文献   

11.
Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm(-2) and 5.02 mm(-2) for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm(-2) and 76.36 mm(-2) for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.  相似文献   

12.
RCS大鼠和Wistar大鼠视网膜酸性磷酸酶活性的动态观察   总被引:3,自引:0,他引:3  
本实验观察了不同年龄组RCS大鼠和Wistar大鼠视网膜中酸性磷酸酶的动态变化及其与RPE细胞消化功能的关系。运用偶氮偶联法显示12d、21d、2m的RCS大鼠和7d、2m的Wistar大鼠视网膜中的酸性磷酸酶;通过图像分析仪测定RPE细胞层和光感受器外节部分的酸性磷酸酶含量,并进行统计学分析。结果:酸性磷酸酶阳性反应呈暗红色,主要位于RPE细胞层,视网膜外核层、内核层,节细胞层亦有少量阳性反应颗粒。2m的RCS大鼠视细胞内、外节的酸性磷酸酶含量则明显高于其它组(P<0.01),其余结构的酸性酶各组间无显著性差异(P>0.05)。结论:RCS大鼠和Wistar大鼠的视网膜色素上皮细胞可能具有相同的消化功能。  相似文献   

13.
Low ocular pigmentation and high long-term exposure to bright light are believed to increase the risk of developing age-related macular degeneration (ARMD). To investigate the role of pigmentation during bright light exposure, cell damage in retinae and choroids of pigmented and non-pigmented rats were compared. Pigmented Long Evans (LE) rats and non-pigmented (albino) Wistar rats were exposed to high intensity visible light from a cold light source with 140,000 lux for 30 min. Control animals of both strains were not irradiated. The animals had their pupils dilated to prevent light absorbance by iris pigmentation. 22 h after irradiation, the rats were sacrificed and their eyes enucleated. Posterior segments, containing retina and choroid, were prepared for light and electron microscopy. Twenty different sections of specified and equal areas were examined in every eye. In albino rats severe retinal damage was observed after light exposure, rod outer segments (ROS) were shortened and the thickness of the outer nuclear layer (ONL) was significantly diminished. Choriocapillaris blood vessels were obstructed. In wide areas the retinal pigment epithelium (RPE) was absent in albino rats after irradiation. In contrast, LE rats presented much less cell damage in the RPE and retina after bright light exposure, although intra-individual differences were observed. The thickness of the ONL was almost unchanged compared to controls. ROS were shortened in LE rats, but the effect was considerably less than that seen in the albinos. Only minimal changes were found in choroidal blood vessels of pigmented rats. The RPE showed certain toxic damage, but cells were not destroyed as in the non-pigmented animals. The number of melanin granules in the RPE of LE rats was reduced after irradiation. Ocular melanin protects the retina and choroid of pigmented eyes against light-induced cell toxicity. Physical protection of iris melanin, as possible in eyes with non-dilated pupils, does not seem to play a major role in our setup. Biochemical mechanisms, like reducing oxidative intracellular stress, are more likely to be responsible for melanin-related light protection in eyes with dilated lens aperture.  相似文献   

14.
The accumulation of the lipofuscin fluorophores in retinal pigment epithelial (RPE) cells leads to the blinding degeneration characteristic of Stargardt disease and related forms of macular degeneration. RPE lipofuscin, including the fluorophore A2E, forms in large part as a byproduct of the visual cycle. Inhibiting visual cycle function with small molecules is required to prevent the formation of the retinotoxic lipofuscins. This in turn requires identification of rate-limiting steps in the operation of the visual cycle. Specific, non-retinoid isoprenoid compounds are described here, and shown through in both in vitro and in vivo experiments, to serve as antagonists of RPE65, a protein that is essential for the operation of the visual cycle. These RPE65 antagonists block regeneration of 11-cis-retinal, the chromophore of rhodopsin, thereby demonstrating that RPE65 is at least partly rate-limiting in the visual cycle. Furthermore, chronic treatment of a mouse model of Stargardt disease with the RPE65 antagonists abolishes the formation of A2E. Thus, RPE65 is also on the rate-limiting pathway to A2E formation. These nontoxic isoprenoid RPE65 antagonists are candidates for the treatment of forms of macular degeneration wherein lipofuscin accumulation is an important risk factor. These antagonists will also be used to probe the molecular function of RPE65 in vision.  相似文献   

15.
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI–IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI–IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.  相似文献   

16.
The cellular pigments of the retinal pigment epithelium (RPE) have been shown to catalyze free radical activity, especially when illuminated with visible or ultraviolet light. This activity is sufficient to cause photooxidation of several major cellular components. The present investigation determined the relative ability of melanin, lipofuscin, and melanolipofuscin granules isolated from human and bovine eyes to oxidize polyunsaturated fatty acids, specifically linoleic and docosahexaenoic acids. The dark reactivity as well as the light-stimulated reactions were determined. The production of hydroperoxide derivatives of the linoleic and docosahexaenoic acids were determined by NADPH oxidation coupled to the activity of glutathione peroxidase, and also by production of thiobarbituric acid reactive substances. All RPE pigment granules stimulated fatty acid oxidation when irradiated with short wavelength (< 550 nm) visible light, with the melanosomes exhibiting the greatest light-induced activity. Only lipofuscin granules, however, caused peroxidation of fatty acids in the dark. These findings provide additional support for the role of RPE pigments in "blue light toxicity" as well as indicating that accumulation of lipofuscin may contribute to increased photooxidation in the aging RPE.  相似文献   

17.
Retinyl palmitate hydrolase (RPH) activity of bovine tissues was estimated from retinol formation following incubation of tissue homogenates with all-trans retinyl palmitate. The quantity of retinol produced in the incubation mixture was analyzed by high-performance liquid chromatography. RPH activities of retinal pigment epithelium (RPE), liver, retina, muscle and brain were 194.2, 138.0, 72.5, 25.0 and 5.1 units/gm protein respectively. The RPH activity in the retina was far above that attributable solely to RPE contaminations. The presence of RPH in the retina suggests that retina can utilize retinyl esters for the formation of visual pigments and/or cellular metabolism.  相似文献   

18.
Insufficient levels of L-DOPA, released from the retinal pigment epithelium (RPE), in albino animals are considered responsible for the abnormal development of the underlying neural retina. L-DOPA normalizes retinal neurogenesis by reducing levels of cell proliferation either by acting on the cells directly or by being converted into dopamine. Here we report the effects of dopamine on mitosis in early postnatal neural retinae from albino and pigmented rats, using 4D (x, y, z and time) confocal microscopy. Exogenous dopamine significantly prolongs mitosis in retinae from albino, but not pigmented, animals. As fewer cells move into and divide in the ventricular zone (VZ) in the presence of dopamine, we conclude that the overall cell cycle is affected. The D1 receptor blocker, SCH 23390, inhibits these effects. Thus, the differential effects of dopamine on neural retinae from pigmented and albino rats in vitro must result from the activation of D1 receptors, which are present in the retina from birth. Immunohistochemical labeling of D1 receptors shows that the pattern of their distribution is similar between pigmentation phenotypes, but levels of expression may be elevated in albinos. Labeling is most intense in the inner plexiform layer but is present throughout the neuroblastic layer. These findings are discussed in light of previous reports of reduced catecholamine levels in the albino retina.  相似文献   

19.

Background

Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet.

Methodology/Principal Findings

Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch''s membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch''s membrane or even inside it.

Conclusions/Significance

In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch''s membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch''s membrane.  相似文献   

20.
The autofluorescence of the retina that originates primarily from lipofuscin fluorophores in retinal pigment epithelial cells, is observed to undergo photobleaching during the acquisition of fundus autofluorescence images. Bisretinoid fluorophores isolated from retinal pigment epithelial cells have the spectral characteristics consistent with their being the source of fundus autofluorescence. Clinically relevant experiments were designed to better understand conditions in the micromilieu of bisretinoid fluorophores that can influence fluorescence efficiencies, photobleaching, and subsequent fluorescence recovery of this fluorophore. The consumption of the bisretinoid A2E due to photooxidation-induced degradation was quantified in solvent systems of variable relative permittivity (formerly called dielectric constant), in micelles, and in phospholipid vesicles of varying composition. Reorganization within biphasic systems was also examined. A2E content was measured by high performance liquid chromatography (HPLC) and fluorescence intensity was quantified spectroscopically. As solvent polarity was increased, A2E fluorescent spectra exhibited red-shifted maxima and reduced intensity. A2E was depleted by light irradiation and the loss was more pronounced in less polar solvents, lower concentrations of anionic surfactant, and in gel- versus fluid-ordered phospholipid liposomes. Conditions that permit A2E aggregation promoted photooxidation/photodegradation, while movement of A2E between bisphasic systems was associated with fluorescence recovery after photobleaching. The fluorescence characteristics of A2E are subject to environmental modulation. Photooxidation and photodegradation of bisretinoid can account for fundus autofluorescence photobleaching. Return of fluorescence intensity after photobleaching likely occurs due to redistribution of A2E fractions amongst co-existing heterogeneous microdomains of the lysosomal compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号