首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review focus is given to the metabolic turnover of gangliosides/glycosphingolipids. The metabolism and accompanying intracellular trafficking of gangliosides/glycosphingolipids is illustrated with particular attention to the following events: (a) the de novo biosynthesis in the endoplasmic reticulum and Golgi apparatus, followed by vesicular sorting to the plasma membrane; (b) the enzyme-assisted chemical modifications occurring at the plasma membrane level; (c) the internalization via endocytosis and recycling to the plasma membrane; (d) the direct glycosylations taking place after sorting from endosomes to the Golgi apparatus; (e) the degradation at the late endosomal/lysosomal level with formation of fragments of sugar (glucose, galactose, hexosamine, sialic acid) and lipid (ceramide, sphingosine, fatty acid) nature; (f) the metabolic recycling of these fragments for biosynthetic purposes (salvage pathways); and (g) further degradation of fragments to waste products. Noteworthy, the correct course of ganglioside/glycosphingolipid metabolism requires the presence of the vimentin intracellular filament net work, likely to assist intracellular transport of sphingoid molecules. ut of the above events those that can be quantitatively evaluated with acceptable reliability are the processes of de novo biosynthesis, metabolic salvage and direct glycosylation. Depending on the cultured cells employed, the percentage of distribution of de novo biosynthesis, salvage pathways, and direct glycosylation, over total metabolism were reported to be: 35% (range: 10-90%) for de novo biosynthesis, 7% (range: 5-10%) for direct glycosylation, and 58% (range: 10-90%) for salvage pathways. The attempts made to calculate the half-life of overall ganglioside turnover provided data of unsure reliability, especially because in many studies salvage pathways were not taken into consideration. The values of half-life range from 2 to 6.5 h to 3 days depending on the cells used. Available evidence for changes of ganglioside/glycosphingolipid turnover, due to extracellular stimuli, is also considered and discussed.  相似文献   

2.
In this study, the glycosphingolipid biosynthesis was investigated in the sparse and the confluent cell populations of cultured human skin fibroblasts.The human skin fibroblast cell populations were metabolically pulse labeled with 14C-galactose (48 h). The amounts of 14C-radioactivity (cpm) incorporated into extracted and purified total cellular glycosphingolipid fractions were counted by -scintillation and the individual glycosphingolipid species were separated by high performance thin layer chromatography and visualized by autoradiography. The relative labeling (%) of individual newly synthesized glycosphingolipid species was detected by densitometric scanning of autoradiographic glycosphingolipid patterns.The incorporation of 14C-label into total glycosphingolipids per cell increased significantly as the cell-density increased, referring to five fold higher rate of glycosphingolipid biosynthesis de novo in cells at confluency vs. sparse populations. The total newly synthesized glycosphingolipid pattern (100%) of sparse cell populations showed a significant predominance of the gangliosides (70%) over the neutral glycosphingolipids (30%), with ganglioside GM2 as the major species followed by monohexosyl-ceramide. Oppositely, the newly synthesized neutral glycosphingolipids (67%) predominated over the gangliosides (33%) in cells at confluency (contact inhibition). Cells reaching confluency were characterized by: (a) a dramatic increase of absolute amount of all newly synthesized neutral glycosphingolipid species, particularly the most abundant monohexosyl-ceramide and trihexosyl-ceramide, but also of the ganglioside GM3; (b) a drastic decrease of absolute amount of newly synthesized ganglioside GM2. The specific shift in newly synthesized glycosphingolipid pattern in cells reaching confluency suggests a down-regulation of biosynthetic pathway primarily at the level of N-acetylgalactosaminyl-transferase. A possible involvement of glycosphingolipids in cell density-dependent regulation of cell growth through establishment of the direct intermolecular intermembrane interactions is discussed.  相似文献   

3.
Tettamanti G  Bassi R  Viani P  Riboni L 《Biochimie》2003,85(3-4):423-437
In this review, the focus is on the role of salvage pathways in glycosphingolipid, particularly, ganglioside metabolism. Ganglioside de novo biosynthesis, that begins with the formation of ceramide and continues with the sequential glycosylation steps producing the oligosaccharide moieties, is briefly outlined in its enzymological and cell-topological aspects. Neo-synthesized gangliosides are delivered to the plasma membrane, where their oligosaccharide chains protrude toward the cell exterior. The metabolic fate of gangliosides after internalization via endocytosis is then described, illustrating: (a) the direct recycling of gangliosides to the plasma membrane through vesicles gemmated from sorting endosomes; (b) the sorting through endosomal vesicles to the Golgi apparatus where additional glycosylations may take place; and (c) the channelling to the endosomal/lysosomal system, where complete degradation occurs with formation of the individual sugar (glucose, galactose, hexosamine, sialic acid) and lipid (ceramide, sphingosine, fatty acid) components of gangliosides. The in vivo and in vitro evidence concerning the metabolic recycling of these components is examined in detail. The notion arises that these salvage pathways, leading to the formation of gangliosides and other glycosphingolipids, sphingomyelin, glycoproteins and glycosaminoglycans, represent an important saving of energy in the cell economy and constitute a relevant event in overall ganglioside (or glycosphingolipid, in general) turnover, covering from 50% to 90% of it, depending on the cell line and stage of cell life. Sialic acid is the moiety most actively recycled for metabolic purposes, followed by sphingosine, hexosamine, galactose and fatty acid. Finally, the importance of salvage processes in controlling the active concentrations of ceramide and sphingosine, known to carry peculiar bioregulatory/signalling properties, is discussed.  相似文献   

4.
GRX cell line represents hepatic stellate cell and can be transformed from an actively proliferation myofibroblast phenotype into a quiescent fat-storing lipocyte phenotype. Both express the same gangliosides (GM3, GM2, GM1 and GD1a), which are resolved as doublets on HPTLC. Upper/lower band ratio is increased in lipocyte-like cells and the upper band is composed by ceramides with long-chain fatty acids. This study evaluated the contribution of de novo synthesis, sphingosine and Golgi recycling pathways on ganglioside biosynthesis, in both phenotypes. Cells were preincubated with 5 mM β-chloroalanine (SPT: serine palmitoyltransferase inhibitor) or with 25 μM fumonisin B1 (ceramide synthase inhibitor) and then radiolabeled with [U-14C]galactose in the continued presence of inhibitors. Gangliosides were extracted, purified and analyzed by HPTLC. In myofibroblast-like cells, simple gangliosides use the de novo pathway while complex gangliosides are mainly synthesized by recycling pathways. In lipocyte-like cells, de novo pathway has a lesser contribution and this is in agreement with the lower activity of the committed enzyme of sphingolipid synthesis (SPT) detected in this phenotype. SPT mRNA has an identical expression in both phenotypes. It was also observed that gangliosides doublets from myofibroblast-like cells have the same distribution between triton soluble and insoluble fractions (upper band > lower band) while the gangliosides doublets from lipocyte-like cells show an inversion in the insoluble fraction (lower band > upper band) in comparison to soluble fraction. These results indicate that myofibroblast- and lipocyte-like cells have important differences between the glycosphingolipid biosynthetic pathways, which could contribute with the respective glycosphingolipid-enriched membrane microdomain’s composition.  相似文献   

5.
The effect of puromycin and cycloheximide on the biosynthesis of neutral glycosphingolipids and gangliosides by PHA stimulated lymphocytes is studied. Under conditions of permanent inhibition of protein synthesis, and depending on the time of lymphocyte stimulation, inhibition of the biosynthesis of neutral glycosphingolipids was either restricted only to certain species or was very low for all glycosphingolipid species. The degree of inhibition of the various ganglioside species was affected by the time of incubation. After transient inhibition of protein synthesis and at times when protein biosynthesis had recovered, neutral glycosphingolipid and ganglioside biosynthesis inhibition was very prominent and did not recover. The possibility is discussed that glycosphingolipid biosynthesis does not depend directly on concurrent nascent peptide formation and it is proposed that inhibition of glycosphingolipid biosynthesis is related primarily to impairment of the endoplasmic reticulum and to inhibition of galactose transferases, secondary to the binding of the inhibitors.  相似文献   

6.
The Rcho-1 cell line, originally established from a rat choriocarcinoma, shows differentiation into placental trophoblastic giant cell-like cells and has been used to study the mechanism of placental function control. In the present study, we analysed the ganglioside composition of Rcho-1 cells by HPTLC orcinol/H2SO4, TLC/immunostaining and immunohistochemistry. Rcho-1 cells expressed GM3 and GD3 as the major gangliosides and CTH as major neutral glycolipid when they were cultured in growth medium (20% FCS) or transplanted beneath the kidney capsule. The expression of these gangliosides was strong in the undifferentiated small cells, whereas the completely differentiated giant cells showed poor staining with antibodies against the gangliosides. Under culture conditions to induce cell differentiation using horse serum (1–20% HS), the expression of GD3 was suppressed and re-expressed when the medium was changed to growth medium, suggesting that a change of ganglioside components may trigger and define the direction of terminal differentiation. Thus the composition of glycolipids is conserved in Rcho-1 cells and is similar to that of the rat placenta, where GM3 is dominant in mid-pregnancy and decreased in late pregnancy, whereas GD3 is low in mid-pregnancy and increased in late pregnancy.  相似文献   

7.
In this report, we establish that 3-azido-3-deoxythymidine (AZT) treatment of melanoma cells greatly alters the pattern of glycosphingolipid biosynthesis. In SK-MEL-30 cells, synthesis of the gangliosides GM3 and GD3 was significantly inhibited (60% and 50% of control, respectively) and the production of their precursor, lactosylceramide, was stimulated by 2.5-fold. Control experiments established that phospholipid synthesis was not affected by AZT treatment, consistent with AZT treatment only affecting lipid biosynthetic reactions that involve glycosylation. Likely as a consequence of decreased rates of ganglioside synthesis, AZT treatment of SK-MEL-30 cells also significantly suppressed the amount of gangliosides shed from the membranes of these cells. Since shedding of gangliosides has been proposed to allow melanoma cells to avoid destruction by the immune system and alterations of glycosphingolipid levels are likely important for the malignant cell phenotype, these results may have important implications regarding the potential use of AZT or related glycosylation inhibitors as cancer chemotherapeutics.Abbreviations AZT 3-azido-3-deoxythymidine - Cer ceramide - Crbr cerebroside - Gal galactose - GalNAc N-acetylgalactosamine - Glc glucose - GlcNAc N-acetylglucosamine - GD3 disialyl lactosylceramide - GM3 sialyl lactosylceramide - HPTLC high-performance thin layer chromatography - LacCer lactosylceramide - MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide - NeuAc N-acetylneuraminic acid - PA phosphatidic acid - PBS phosphate-buffered saline - PC phosphatidylcholine - PDMP 1-phenyl-2-decanoylamino-3-morpholino-1-propanol - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SM sphingomyelin  相似文献   

8.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   

9.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

10.
OBSERVATIONS ON PURINE METABOLISM IN RAT BRAIN   总被引:4,自引:4,他引:0  
Both de novo and preformed base or salvage pathways are simultaneously operative in the biosynthesis of purine nucleotides in rat brain per se. A preferential utilization of de novo precursors is demonstrated.  相似文献   

11.
1. The lipid fraction of the plasma membrane of pig mesenteric lymph-node lymphocytes contained primarily (94%) neutral lipids and phospholipids in about equal weights. The remianing lipid comprised glycosphingolipids (1.8%), gangliosides (o.27%)and probably ceramides (1.3%).The major phospholipid was phosphatidylcholine (46% of the total), and mono- and tri-hexosylceramides accounted for 72% of the glycosphingolipids. Haematoside was distributed between the glycosphingolipid and ganglioside fractions. The major ganglioside was monosialoganglioside. About 90% of the sialic acid was N-glycollylated. 2. A comparision of the lipid composition of the plasma-membrane fraction with that of the initial lymph-node homogenate showed that the purified membrane contained increased proportions of phospholipids, especially sphingomyelin, glycosphingolipids and gangliosides. 3. Fatty acid analyses showed that the membrane phosphatidylcholine was rich in palmitic acid, that the sphingomeyelin and phosphatidylethanolamine were high in myristic acid and that the glycosphingolipids were rich in oleic acid.  相似文献   

12.
Gangliosides constitute a large and heterogeneous family of acidic glycosphingolipids that contain one or more sialic acid residues and are expressed in nearly all vertebrate cells. Their de novo synthesis starts at the endoplasmic reticulum and is continued by a combination of glycosyltransferase activities at the Golgi complex, followed by vesicular delivery to the plasma membrane. At the cell surface, gangliosides participate in a variety of physiological as well as pathological processes. The cloning of genes for most of the glycosyltransferases responsible for ganglioside biosynthesis has produced a better understanding of the cellular and molecular basis of the ganglioside metabolism. In addition, the ability to delete groups of glycosphingolipid structures in mice has been enormously important in determining their physiological roles. Recently, a number of enzymes for ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane, which might contribute to modulate local glycolipid composition, and consequently, the cell function.  相似文献   

13.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

14.
The effect of neutral (galactocerebroside and asialo-ganglioside GM1) or anionic (sulphatide and gangliosides GM1, GD1a and GT1b) glycosphingolipids on the activity of phospholipase A2 from pig pancreas was studied in mixed monolayers of dilauroyl phosphatidylcholine with the glycosphingolipids in different molar fractions at various constant surface pressures. The activity of the enzyme depends on the proportion and type of glycosphingolipid in the interface. Sulphatide activates the enzyme at all proportions, whereas galactocerebroside shows inhibition or activation depending on its proportion in the film. Asialo-ganglioside GM1 and gangliosides GM1, GD1a and GT1b can strongly inhibit the enzyme at relatively low molar fractions in the film in the following order: asialo-ganglioside GM1 less than ganglioside GM1 less than ganglioside GT1b less than ganglioside GD1a. The changes of activity are not due to a direct action of the lipids on the active centre or interfacial recognition region of the enzyme.  相似文献   

15.
Neuroblastoma and glioma cells were grown in the presence of [3H]galactose, and the incorporation of 3H into gangliosides and the transport of newly synthesized gangliosides to the cell surface were examined under different experimental conditions. A variety of drugs, including inhibitors of protein synthesis and energy metabolism, modulators of the cytoskeleton and the ionophore monensin, had no effect on the transport of newly synthesized GD1a in neuroblastoma cells. Only low temperature effectively blocked translocation to the plasma membrane. Monensin, however, had marked effects on the biosynthesis of gangliosides and neutral glycosphingolipids. Whereas incorporation of 3H into complex glycosphingolipids was reduced, labeling of glucosylceramide was increased in cells exposed to monensin. In addition, biosynthesis of the latter glycolipid was less susceptible to low temperatures than that of more complex ones. Previous studies have implicated the Golgi apparatus as the predominant site of glycosylation of gangliosides. As monensin has been reported to interfere with the Golgi apparatus, our results indicate that glucosylceramide may be synthesized at a site that is separate from the site where further glycosylation occurs. Once synthesis of a ganglioside is completed, transport of the molecule to the cell surface proceeds under conditions of cytoskeletal disruption, energy depletion and ionic inbalance, but not low temperature.  相似文献   

16.
Summary Glycosphingolipid biosynthesis was examined using [3H]-galactose as a precursor as rat L6 myoblasts fused to form multinucleated myotubes. Incorporation of label into neutral glycolipids decreased steadily as the population of myotubes increased, so that final biosynthesis was one-half that observed with myoblasts (p < 0.02). Conversely, ganglioside biosynthesis doubled during myoblast confluency (p < 0.02) and then decreased as myotubes formed. Qualitatively, L6 cells synthesized large amounts of ganglioside GM3 during all myogenic phases. The major neutral glycosphingolipid products were lactosylceramide and paragloboside (nLcOse4Cer). Few changes in TLC autoradiographic patterns were noted during differentiation, with the exception of a slight decrease in ganglioside GM1. The results indicate that the biosynthesis of glycosphingolipids is tightly regulated during myogenesis in vitro and suggest a role for membrane gangliosides in muscle cell differentiation.Abbreviations GM1 II3NeuAc-GgOse4Cer - GM3 II3NeuAc-GgOse2Cer - MG4 IV3NeuAc-nLcOse4Cer - MG6 VI3NeuAc V4Gal-IV3GlcNAc-nLcOse4Cer - TLC Thin-Layer Chromatography - DMEM Dulbecco's Modified Eagles' Medium  相似文献   

17.
Brain tissue is characterized by its high glycosphingolipid content, particularly those containing sialic acid (gangliosides). As a result of this observation, brain tissue was a focus for studies leading to the characterization of the enzymes participating in ganglioside biosynthesis, and their participation in driving the compositional changes that occur in glycolipid expression during brain development. Later on, this focus shifted to the study of cellular aspects of the synthesis, which lead to the identification of the site of synthesis in the neuronal soma and their axonal transport toward the periphery. In this review article, we will focus in subcellular aspects of the biosynthesis of glycosphingolipid oligosaccharides, particularly the mechanisms underlying the trafficking of glycosphingolipid glycosyltransferases from the endoplasmic reticulum to the Golgi, those that promote their retention in the Golgi and those that participate in their topological organization as part of the complex membrane bound machinery for the synthesis of glycosphingolipids.  相似文献   

18.
The demonstration of a precursor-product relationship in the course of GM1 and GD1a biosynthesis is described in the present paper. We injected rats with GM2 gangliosides [GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1'Cer] of brain origin, which were isotopically radiolabeled on the GalNAc ([GalNAc-3H]GM2) or sphingosine ([Sph-3H]GM2) residue. We then compared the time-courses of GM1 and GD1a biosynthesis in the liver after the administration of each radiolabeled GM2 derivative. After the administration of [GalNAc-3H]GM2, GM1, and GD1a were both present as doublets, that could be easily resolved on TLC. The lower spot of each doublet was identified as a species having the typical rat brain ceramide moiety and represented gangliosides formed through direct glycosylation of the injected GM2. The upper spot of each doublet was identified as a species having the typical rat liver ceramide moiety and represented gangliosides formed through recycling of the [3H]GalNAc residue, released during ganglioside catabolism. After the administration of [Sph-3H]GM2, only ganglioside with the rat brain ceramide moiety were found, that represented the sum of ganglioside formed through direct glycosylation and those formed through recycling of some sphingosine-containing fragments. In each case, the time-course of GM1 and GD1a biosynthesis exhibited a precursor-product relationship. The curve obtained from the direct glycosylation showed a timing delay with respect to those obtained from recycling of GM2 fragments. These results are consistent with the hypothesis that the sequential addition of activated sugars to a sphingolipid precursor is a dissociative process, catalyzed by physically independent enzymatic activities.  相似文献   

19.
1. The glycosphingolipid compositions of the thymus and bursa of Fabricius of young male chickens were compared. The two tissues were found to contain complex mixtures of both neutral glycosphingolipids and gangliosides. Both tissues contained mono-, di-, tri-, tetra- and penta-glycosylceramides; the pentaglycosylceramide displayed a reaction of identity with authentic Forssman antigen when tested against a specific anti-(Forssman antigen) serum. The ganglioside G(m3) containing N-acetylneuraminic acid was the principle ganglioside of both tissues. 2. The thymus contained appreciable amounts of the simple ganglioside N-acetylneuraminylgalactosylceramide, a compound not found in the bursa. The ganglioside G(d3) (disialohaematoside) was detected in both tissues. 3. Rat and human thymus, like sheep thymus (Narasimhan, Hay, Greaves & Murray (1976) Biochim, Biophys. Acta 431, 578-591), both contained a tetraglycosylceramide species as their most complex neutral glycosphingolipid and possessed little or no Forssman antigen. They also contained a complex mixture of gangliosides. 4. The possible significance of these results is briefly discussed.  相似文献   

20.
M Saito  M Saito  A Rosenberg 《Biochemistry》1985,24(12):3054-3059
We have reported [Saito, M., Saito, M., & Rosenberg, A. (1984) Biochemistry 23, 1043-1046] that the monovalent cationic ionophore monensin reduced the incorporation of labeled galactose into oligosaccharidyl glycosphingolipids (globotriaosylceramide, globotetraosylceramide, and gangliosides) and induced a cellular accumulation of glucosyl- and lactosylceramide in cultured diploid human fibroblasts. We have undertaken further studies on the effects of monensin and made comparison with the effects of related monovalent cation transporters on plasma membrane glycosphingolipid anabolism in human fibroblasts. Our results demonstrate that ionic flux can markedly influence glycosphingolipid synthesis, and they indicate that, like glycoprotein, the sites of glycosylation of the initial, precursor glycosphingolipids are different from the sites of higher glycosylation. At a concentration of 10(-7) M, monensin induced the maximum inhibition of incorporation of labeled galactose into polyglycosyl sphingolipids: globotriaosylceramide, globotetraosylceramide, and gangliosides; increased incorporation of labeled galactose into glucosyl- and lactosylceramide was clearly evident, and their content rose measurably in the cell at concentrations of monensin as low as 10(-8) M. These effects of monensin were reversible. Incorporation of labeled galactose into higher glycosylated neutral glycosphingolipids and gangliosides slowly resumed, and the accumulated glycosylceramide diminished after removal of monensin from the culture medium. Ouabain (plasma membrane Na+,K+-ATPase inhibitor) and A23187 (Ca2+ ionophore) also caused a rapid increase in incorporation of labeled hexose into glucosylceramide and decreased its incorporation into higher neutral glycosphingolipids and into gangliosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号