首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长寿保障基因LAG1是从酵母中克隆的与酵母寿命相关的基因,随酵母生命衰老而表达发生变化.对大鼠中同源基因LASS1进行克隆、测序和序列分析,发现其mRNA序列不同于GenBank中的预测序列,开放阅读框包含1 053碱基对,编码蛋白由350个氨基酸组成,内含Lag1蛋白家族保守的Lag1p motif和TLC结构域.从新生、1月龄、6月龄、12月龄和24月龄大鼠脑顶叶皮质提取总RNA,用半定量RT-PCR及RNA印迹方法对LASS1在大鼠脑皮质中的表达随年龄变化情况进行分析.结果表明,出生后LASS1表达量随年龄增加而增高,至6月龄达高峰,然后随年龄增加而逐渐下降,至24月老龄鼠达最低.衰老相关β半乳糖苷酶(SA-β-gal)对鼠脑皮层染色发现,神经元阳性染色随年龄增长明显增加.大鼠LASS1基因表达在正常衰老过程中发生变化,为进一步研究该基因的作用奠定了基础.  相似文献   

2.
3.
4.
5.
Implantation serine protease (ISP) was first identified in the uteri of pregnant mice. It is thought that ISP may have an important role in the initiation of implantation. However, the expression status and detailed functions of ISP remain unclear. In this study, the expression of ISP was investigated in the rat uterus. The analysis of two rat genes registered in GenBank, accession nos. XM_220240 and XM_577076, exhibited high identities to the mouse ISP2 genes, respectively at an mRNA level. We labeled the former as rISP2a and the latter as rISP2b. Using RT-PCR, we found that both genes were expressed in the uterus. Specifically, rISP2a mRNA was detected in the uterus throughout pregnancy, whereas rISP2b mRNA was only expressed in the uterus from day 5 of pregnancy until the end of gestation. Expression of both genes was observed specifically within the endometrial gland epithelium. Furthermore, rISP2a was also observed to be expressed in the fetus and placenta, whereas rISP2b expression was observed in the fetus but not in the placenta. An expressional signal of the rISP2a gene was observed in the spongiotrophoblasts, giant cells and decidual endometrium in the placenta. In the embryo, the ventral specific region was positive in rISP2a and rISP2b gene expression. These findings indicate the possibility that the presently examined genes with high identity to mouse ISP2 may play some role not only during the implantation phase, but also in the development of the placenta and embryo.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Zhang J  Yu L  Fu Q  Gao J  Xie Y  Chen J  Zhang P  Liu Q  Zhao S 《Gene》2001,264(2):273-279
  相似文献   

17.
The cDNA clone encoding a mouse scavenger receptor with C-type lectin (SRCL), a novel member of the scavenger receptor family, has been isolated from a mouse embryonic cDNA library. The predicted cDNA sequence contains a 2226 bp open reading frame encoding a coiled-coil, collagen-like, C-type lectin/carbohydrate recognition domain with an overall sequence identity of 92% to human SRCL. In contrast to human, mouse SRCL mRNA was expressed ubiquitously in various adult tissues including the liver and spleen, in which human SRCL mRNA was under detection limits. Mouse SRCL mRNA was expressed in the macrophage cell line J774A.1 cells at a high level and in the embryo as early as E9.  相似文献   

18.
19.
TGFbeta signals play important roles in establishing the body axes and germ layers in the vertebrate embryo. Vg1 is a TGFbeta-related gene that, due to its maternal expression and vegetal localization in Xenopus, has received close examination as a potential regulator of development in Xenopus, zebrafish, and chick. However, a mammalian Vg1 ortholog has not been identified. To isolate mammalian Vg1 we screened a mouse expression library with a Vg1-specific monoclonal antibody and identified a single cross-reactive clone encoding mouse Gdf1. Gdf1 is expressed uniformly throughout the embryonic region at 5.5-6.5 days postcoitum and later in the node, midbrain, spinal cord, paraxial mesoderm, lateral plate mesoderm, and limb bud. When expressed in Xenopus embryos, native GDF1 is not processed, similar to Vg1. In contrast, a chimeric protein containing the prodomain of Xenopus BMP2 fused to the GDF1 mature domain is efficiently processed and signals via Smad2 to induce mesendoderm and axial duplication. Finally, right-sided expression of chimeric GDF1, but not native GDF1, reverses laterality and results in right-sided Xnr1 expression and reversal of intestinal and heart looping. Therefore, GDF1 can regulate left-right patterning, consistent with the Gdf1 loss-of-function analysis in the mouse (C. T. Rankin, T. Bunton, A. M. Lawler, and S. J. Lee, 2000, Nature Genet. 24, 262-265) and a proposed role for Vg1 in Xenopus. Our results establish that Gdf1 is posttranslationally regulated, that mature GDF1 activates a Smad2-dependent signaling pathway, and that mature GDF1 is sufficient to reverse the left-right axis. Moreover, these findings demonstrate that GDF1 and Vg1 are equivalent in biochemical and functional assays, suggesting that Gdf1 provides a Vg1-like function in the mammalian embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号