首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant glycoprotein Ibα latex beads (rGPIbα-LB) are a potential solution to overcoming platelet transfusion problems with artificial platelets. To understand the transport process of artificial platelets and to estimate the particle motion when adhering to the wall surface, we evaluated the lateral motion of rGPIbα-LB in terms of drift and random motion, because the lateral motion is an important factor for transport and adhesion. We observed the lateral motion of rGPIbα-LB flowing with red blood cells toward the immobilized von Willebrand factor (vWf) surface in a model arteriole at wall shear rates of 200–1000 s?1 and 0–40% Hct. At 40% Hct, wall shear rate dependence was observed for the drift motion, i.e. the lateral velocity of rGPIbα-LB toward the wall. In the near-wall region, the drift motion of contacting particles differed substantially from that of non-contacting particles. Additionally, the trajectories of contacting particles on the vWf surface had specific motion that was not observed on the BSA surface. These results suggest that the adhesion force between rGPIbα and vWf is highly associated with the motion of particles near the wall. These features are desirable for artificial platelets, particularly for the adhesion process.  相似文献   

2.
Platelet glycoprotein GPIaIIa is an adhesive protein that recognizes collagen. We have investigated polymerized albumin particles conjugated with recombinant GPIaIIa (rGPIaIIa-poly Alb) for their platelet-like function. To evaluate the feasibility of these particles to achieve the hemostatic process, we measured the deformability (Young’s modulus and spring constant) and the adhesive force of the particles using atomic force microscopy, which can measure the mechanical properties of individual cells. Our results showed that the Young’s modulus of these particles was 2.3-fold larger than that of natural platelets and 12-fold larger than that of human red blood cells. The Young’s modulus of the particles may have been determined by the properties of the polymerized albumin particle, although the glycoprotein of the platelet surface also contributed to the higher modulus. Our results also showed that the adhesive force of the rGPIaIIa-poly Alb with the collagen ligand was 52% of that of natural platelets. These two mechanical properties (deformability and adhesive force) of cells or particles, such as rGPIaIIa-poly Alb, are important specifications for the optimum design of platelet substitutes.  相似文献   

3.
It has long been known that platelets undergo margination when flowing in blood vessels, such that there is an excess concentration near the vessel wall. We conduct experiments and three-dimensional boundary integral simulations of platelet-sized spherical particles in a microchannel 30 μm in height to measure the particle-concentration distribution profile and observe its margination at 10%, 20%, and 30% red blood cell hematocrit. The experiments involved adding 2.15-μm-diameter spheres into a solution of red blood cells, plasma, and water and flowing this mixture down a microfluidic channel at a wall shear rate of 1000 s−1. Fluorescence imaging was used to determine the height and velocity of particles in the channel. Experimental results indicate that margination has largely occurred before particles travel 1 cm downstream and that hematocrit plays a role in the degree of margination. With simulations, we can track the trajectories of the particles with higher resolution. These simulations also confirm that margination from an initially uniform distribution of spheres and red blood cells occurs over the length scale of O(1 cm), with higher hematocrit showing faster margination. The results presented here, from both experiments and 3D simulations, may help explain the relationship between bleeding time in vessel trauma and red blood cell hematocrit as platelets move to a vessel wall.  相似文献   

4.
Synthetic nanoparticles and other stiff objects injected into a blood vessel filled with red blood cells are known to marginate toward the vessel walls. By means of hydrodynamic lattice-Boltzmann simulations, we show that active particles can strongly accelerate their margination by moving against the flow direction: particles located initially in the channel center migrate much faster to their final position near the wall than in the nonactive case. We explain our findings by an enhanced rate of collisions between the stiff particles and the deformable red blood cells. Our results imply that a significantly faster margination can be achieved either technically by the application of an external magnetic field (if the particles are magnetic) or biologically by self-propulsion (if the particles are, e.g., swimming bacteria).  相似文献   

5.
It has been reported that: (1) large variations were found in the number of sialic acid (SA) capped with N-acetyllactosamines (SA-Galβ1-4GlcNAc-R) and α-Gal epitopes (Galα1-3Galβ1-4GlcNAc-R) or uncapped N-acetyllactosamines (Galβ1-4GlcNAc-R) on different mammalian red blood cells, and on nucleated cells originating from a given tissue in various species; (2) goat, sheep, horse and mouse red blood cells lack α-Gal epitopes, despite the expression of this epitope on a variety of nucleated cells in these species, including lymphocytes differentiated from the same hematopoietic origin. In this study, flow cytometry and Western blot analyses of pig red blood cells showed that α-Gal epitopes on pig red cells developed concomitantly after treatment with neuraminidase, suggesting that the terminal N-acetyllactosaminide glycans were capped with SA-α-Gal epitopes. Whereas, the expression of the α-Gal epitopes on red blood cells from Sika deer (Cevus nippon hortulorum) were found to be absent even though the epitopes were present on their white blood cells. Thus, these results add new data not only for the terminal carbohydrate structures on cell surface glycans of various mammalian cells, but also for wide variety of epitope expression on the cells from different tissues, which might be useful for understanding their unique states resulting from differentiation and evolution.  相似文献   

6.
Profiling of carbohydrate structures on cell membranes has been difficult to perform because of the complexity and the variations of such structures on cell surface glycans. This study presents a novel method for rapid profiling of cell surface glycans for terminal N-acetyllactosamines (Galβ1-(3)4GlcNAc-R) that are uncapped, capped with sialic acid as SA-Galβ1-(3)4GlcNAc-R, or with α1,3galactosyls as the α-gal epitope- Galα1-3Galβ1-(3)4GlcNAc-R. This method includes two enzymatic reactions: (1) Terminal sialic acid is removed by neuraminidase, and (2) α-gal epitopes are synthesized on the exposed N-acetyllactosamines by α1,3galactosyltransferase. Existing and de novo synthesized α-gal epitopes on cells are quantified by a modification of radioimmunoassay designated as “ELISA inhibition assay,” which measures binding of the monoclonal anti-Gal antibody M86 to α-gal epitopes. This binding is proportional to the number of cell surface α-gal epitopes. The amount of free M86 antibody molecules remaining in the solution is determined by ELISA using synthetic α-gal epitopes linked to albumin as solid phase antigen. The number of α-gal epitopes on cells is estimated by comparing binding curves of M86 incubated with the assayed cells, at various concentrations of the cells, with the binding of M86 to rabbit red cells expressing 2 × 106 α-gal epitopes/cell. We could demonstrate large variations in the number of sialic acid capped N-acetyllactosamines, α-gal epitopes and uncapped N-acetyllactosamines on different mammalian red blood cells, and on nucleated cells originating from a given tissue in various species. This method may be useful for rapid identification of changes in glycosylation patterns in cells subjected to various treatments, or in various states of differentiation.  相似文献   

7.
Immobilization of α-chymotrypsin on magnetic particles with stable coat with titanium oxides as a main constituent allowed the biocatalytic system to be quickly and qualitatively separated into the components after completion of the enzymatic reaction. X-ray phase analysis demonstrated that the coat of magnetic particles is composed mainly of titanium dioxide in brookite modification. The maximal capacity of the particles amounted to 0.3 mg protein/mg particles. It was demonstrated that the reaction catalyzed by immobilized α-chymotrypsin proceeds in a kinetic mechanism due to a high dispersion of the ferromagnetic particles. The catalytic constant (25 s−1) andK M (0.17 mM) for the immobilized enzyme for the hydrolysis of N-acetyl-L-tyrosine ethyl ester are comparable to the corresponding characteristics for the free enzyme.  相似文献   

8.
Cell-to-support interaction and cell-to-cell agglomeration phenomena have been studied in a model system composed of intact yeast cells and Chelating-Streamline™ adsorbents. Biomass components and beaded adsorbents were mainly characterized by contact angle determinations with three diagnostic liquids. Complementarily, zeta potential measurements were performed. These experimental values were employed to calculate free energy of interaction versus distance profiles in aqueous media. The effect of immobilized metal-ion type and buffer pH on the interaction energy was evaluated. Calculations indicated that moderate interaction between cell particles and adsorbent beads can develop due to the presence of Cu2+ ions onto the solid phase. The strength of interaction increased with buffer pH, within the range 6.0 to 8.3 e.g. secondary energy pockets increased from |15| to |60| kT. Cell-to-cell secondary energy minimum was ≥ |14| kT showing low-to-moderate tendencies to aggregate, particularly at pH ≥ 8. Extended DLVO predictions were generally confirmed by biomass deposition experiments. However, an exception was found when working with immobilized Cu2+ at pH 8 since yeast cells were able to sequestrate such immobilized ions. Therefore, lower-than-expected values for the depositions coefficient (α) were observed. Understanding biomass attachment onto Chelating supports can help in better design and operate expanded bed adsorption of bioproducts.  相似文献   

9.
Auxin transport and immobilization were followed in the petioles of intact plants of Coleus blumei Benth. after application of IAA-2-14C at a physiological concentration as droplets to the upper surface near the base of the blades of leaves #3 and #5. After 14 hr transportable and immobilized radiocarbon was found all along the petioles. Moreover, about half the total amount of 14C detected within the plant (= uptake) had moved beyond the petioles. This was true for leaves of both ages although the younger #3 petioles were only about half as long as the older #5 petioles. Because the uptake of radiocarbon by the #3 petioles was roughly half that of the #5 petioles, the absolute amounts immobilized per unit length of section were essentially uniform in the two petioles. On the contrary, the fractions remaining transportable within the #3 petiole sections averaged half those of the #5 petiole sections. The distribution of the transportable and the immobilized radioactive fractions along the petioles was characterized by high values near the apical application point, a decrease toward the middle of the petioles, and an increase to the level of the apical part toward the base of the petioles, which includes the abscission layer. The results have been discussed in connection with measurements of the cross sectional areas and the lengths of the epidermal and subepidermal cells along the petioles. An auxin transport and immobilization model, which assumes there are two different immobilization systems of different strength in the differently aged tissues, is outlined to explain the observations.  相似文献   

10.
In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2).  相似文献   

11.
The accumulation of platelets near the blood vessel wall or artificial surface is an important factor in the cascade of events responsible for coagulation and/or thrombosis. In small blood vessels and flow channels this phenomenon has been attributed to the blood phase separation that creates a red blood cell (RBC)-poor layer near the wall. We hypothesized that blood soluble drag-reducing polymers (DRP), which were previously shown to lessen the near-wall RBC depletion layer in small channels, may consequently reduce the near-wall platelet excess. This study investigated the effects of DRP on the lateral distribution of platelet-sized fluorescent particles (diam. = 2 μm, 2.5 × 10?/ml) in a glass square microchannel (width and depth = 100 μm). RBC suspensions in PBS were mixed with particles and driven through the microchannel at flow rates of 6-18 ml/h with and without added DRP (10 ppm of PEO, MW = 4500 kDa). Microscopic flow visualization revealed an elevated concentration of particles in the near-wall region for the control samples at all tested flow rates (between 2.4 ± 0.8 times at 6 ml/h and 3.3 ± 0.3 times at 18 ml/h). The addition of a minute concentration of DRP virtually eliminated the near-wall particle excess, effectively resulting in their even distribution across the channel, suggesting a potentially significant role of DRP in managing and mitigating thrombosis.  相似文献   

12.
The proinflammatory cytokine tumor necrosis factor-alpha (TNFα) exists naturally in two forms, a 26 kDa transmembrane form (TM-TNFα), and a 17 kDa secretory form (S-TNFα). The biological roles for each of these forms of TNFα in tumor killing have not been completely elucidated. Therefore, in this study, three different recombinant retroviral vectors, wild-type TNFα, solely secretable TNFα mutant, and uncleavable transmembrane TNFα mutant, were constructed by molecular techniques and stably transfected into a murine hepatic carcinoma cell line (H22). TNFα, either secreted in cell culture supernatants by secretable TNFα mutant- or wild-type TNFα-producing tumor cells, or as a treansmembrane form expressed on the cell surface of uncleavable TNFα mutant- or wild-type TNFα-synthesizing tumor cells, was demonstrated to be cytotoxic against the TNF sensitive L929 cell line. The H22 cells transfected with the three different forms of TNFα were shown to kill parental H22 cells in an in vitro cytotoxicity assay [effect/target (E/T) ratio-dependent manner], and their maximal killing rates were ~38–43% at E/T ratio of 5:1. The injection of total 2.5×105 mixed cells containing transfected and parental H22 tumor cells at different ratios into syngeneic mice resulted in the inhibition of tumor growth with a maximal inhibition rates of ~57~72% at E/T ratio of 5:1. A transient weight loss was found in mice bearing solely secretable TNFα mutant producing tumors, whereas no obvious side effects were seen in mice bearing uncleavable TNFα mutant or wild-type TNFα expressing tumors. Finally, we demonstrate that tumors secreting S-TNFα promoted the subsequent infiltration of CD4+ T cells, and to a lesser extent CD8+ T cells, to the tumor site. The TM-TNFα expressing tumors up-regulated Fas (CD95) expression and inhibited the expression of tumor metastasis associated molecule CD44v3. These results suggest that S-TNFα and TM-TNFα kill cancer cells in vivo through different mechanisms of action. We conclude that the non-secreted form of TNFα may be an ideal candidate for cancer gene therapy due to its therapeutic potential and lowered side effect profile.  相似文献   

13.
Natural killer T (NKT) cells have been implicated in the regulatory immune mechanisms that control autoimmunity. However, their precise role in the pathogenesis of rheumatoid arthritis (RA) remains unclear. The frequency, cytokine profile and heterogeneity of NKT cells were studied in peripheral blood mononuclear cells (PBMCs) from 23 RA patients and 22 healthy control individuals, including paired PBMC–synovial fluid samples from seven and paired PBMC–synovial tissue samples from four RA patients. Flow cytometry revealed a decreased frequency of NKT cells in PBMCs from RA patients. NKT cells were present in paired synovial fluid and synovial tissue samples. Based on the reactivity of PBMC-derived NKT cells toward α-galactosylceramide, RA patients could be divided into responders (53.8%) and nonresponders (46.2%). However, NKT cells isolated from synovial fluid from both responders and nonresponders expanded upon stimulation with α-galactosylceramide. Analysis of the cytokine profile of CD4+ and CD4- PBMC derived NKT cell lines from RA patients revealed a significantly reduced number of IL-4 producing cells. In contrast, synovial fluid derived NKT cell lines exhibited a Th0-like phenotype, which was comparable to that in healthy control individuals. This suggests that synovial fluid NKT cells are functional, even in patients with nonresponding NKT cells in their blood. We conclude that, because the number of Vα24+Vβ11+CD3+ NKT cells is decreased and the cytokine profile of blood-derived NKT cells is biased toward a Th1-like phenotype in RA patients, NKT cells might be functionally related to resistance or progression of RA. Providing a local boost to the regulatory potential of NKT cells might represent a useful candidate therapy for RA.  相似文献   

14.
Summary Human erythrocyte plasma membranes were found to contain the following glycosidases: α- and β-glucosidase, α- and β-galactosidase, α- and β-fucosidase, β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase, β-xylosidase and α-mannosidase. All the enzymes except β-fucosidase had activity interpreted to be on the external surface of the plasma membrane. The enzymes had optimum pH values of 5.2 to 5.0 and temperatures of 37 to 40°C. The enzymes were not greatly activated by divalent cations but Hg++ and Pb++ were inhibitory. The enzyme extract of the human erythrocyte plasma membranes liberated carbohydrate from intact red cells, which lead to the speculation that the glycosidases might function to modify the erythrocyte plasma membrane. The author is a Research Career Development Awardee of the National Institute of General Medical Sciences.  相似文献   

15.
An α-galactosidase capable of converting B red blood cells into the universal blood type cells at the neutral pH was produced by a novel obligate marine bacterium strain KMM 701 (VKM B-2135 D). The organism is heterotrophic, aerobic, and halophilic and requires Na+ ions and temperature up to 34°C for its growth. The strain has a unique combination of polysaccharide-degrading enzymes. Its single intracellular α-galactosidase exceeded other glycoside hydrolases in the level of expression up to 20-fold. The α-galactosidase was purified to determine the N-terminal amino acid sequences and new activities. It was found to inhibit Corynebacterium diphtheria adhesion to host buccal epithelium cell surfaces with high effectiveness. The nucleotide sequence of the homodimeric α-galactosidase indicates that its subunit is composed of 710 amino acid residues with a calculated Mr of 80,055. This α-galactosidase shares structural property with 36 family glycoside hydrolases. The properties of the enzyme are likely to be highly beneficial for medicinal purposes.  相似文献   

16.
Besides their role as potent antigen-presenting cells, myeloid dendritic cells (MDCs), but not plasmacytoid dendritic cells (PDCs), have been reported to have cytotoxic or cytostatic activity on some tumor cells. In this article, we analyzed the tumoristatic potential of a distinct peripheral blood monocyte-derived MDC subset which co-expressed PDC-specific marker CD123. CD123+ MDCs represented a subset of small-sized DCs and accounted for 45–60% of peripheral blood monocytes cultured with granulocyte-macrophage colony-stimulating factor and interleukine-4 (IL-4) for 7 d. They exhibited more significant antiproliferative activity toward hematological tumor cell lines of Jurkat, HL60, and myelodysplastic syndromes over-leukemia than CD123 MDCs even at a low effecter/target ratio. Pretreatment of MDC and their supernatant with TRAIL-R2:Fc significantly reduced the tumoristatic effect of CD123+ MDCs but not of CD123 MDCs and their supernatant. CD123+ MDCs expressed higher level of cytoplasmic TNF-α-related apoptosis-inducing ligand (TRAIL) than CD123 MDCs, whereas both expressed very little surface and soluble TRAIL. These results reveal that CD123+ cells represented a predominant subset of MDCs generated from peripheral blood monocytes in vitro, characterized by their potential tumoristic activity partially via cytoplasmic TRAIL.  相似文献   

17.
Mesoscale simulation of blood flow in small vessels   总被引:1,自引:0,他引:1       下载免费PDF全文
Bagchi P 《Biophysical journal》2007,92(6):1858-1877
Computational modeling of blood flow in microvessels with internal diameter 20-500 microm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20-300 microm at discharge hematocrit of 10-60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation.  相似文献   

18.
Partitioning in aqueous polymer two-phase systems of polyethylene glycol and dextran was used to detect and compare cell-surface charge and cell-surface hydrophobicity of Aeromonas hydrophila, A. caviae, A. sobria, Vibrio cholerae, and V. anguillarum strains. These strains have cell-surface components that bound either native or thermally denatured type I collagen (i.e., a mixture of the α1+α2 chains) and gelatin immobilized on latex beads. Our goals were: (1) to compare the possible relationship between the cell-surface charge/hydrophobicity and binding to collagen and (2) to evaluate the influence of the culture media on the expression of surface properties. There was no apparent relationship between cell-surface charge, cell-surface hydrophobicity, and binding to collagen. The expression of surface properties was dependent on the culture media. There was no relationship between binding to immobilized collagen and binding to soluble 125I-labeled collagen. Particle-agglutination reactivity differed when using various collagen-coated microbead preparations. There were general differences in the particle-agglutination reactivity when collagen-coated latex beads were prepared using different coating procedures. The negative charge and hydrophobicity of the various collagen-coated microbead preparations were also studied by partitioning in the two-phase system of polyethylene glycol and dextran. Under these conditions, the α1+α2 collagen-chain mixture covalently immobilized on carboxy-modified latex beads was less hydrophobic and negatively charged than gelatin and native collagen immobilized on the same kind of latex beads. For latex beads passively coated with collagen preparations, the α1+α2 collagen-chain mixture was more hydrophobic than gelatin and native collagen. We suggest that for screening collagen-binding among Vibrio and Aeromonas strains, a reliable and sensitive particle-agglutination assay should consider the collagen preparation and the coating procedure for the immobilization of collagen onto the latex beads. In this regard, carboxy-modified latex beads coated with an α1+α2 collagen-chain mixture gave the best results. Received: 9 January 1995 / Accepted: 30 May 1995  相似文献   

19.
Presence of subtypes of voltage-dependent Ca channels was investigated in young and old human red cells, employing immunological and flux-kinetics methods. Western blots showed specific reaction toward polyclonal rabbit antibodies raised against a highly conserved residue of α1C, subunit of high-voltage activated Ca channels (pan α1) and against conserved residues of α1C and α1E subunits. No specific reaction was detected with antibodies against conserved residues of α1A, α1B, or α1D subunits. Only a single band (approx 260 kDa) was revealed on anti-pan α1A or anti-α1E blots, whereas two bands (200 and 230 kDa) were detected by α1C exposure, Blots from old cells always showed diminished band intensity. Channel activity was assessed by studying the effect of voltage-dependent Ca channels blockers' under conditions likely to alter the red cell membrane potential, through incubation in media of different composition. In a 150 mM NaCl+5 mM KCl medium, blockers of L-, R-, and Q-type caused a 15–50% reductions of 45Ca influx into cells, which had the Ca pump inactivated by either exhaustive adenosine triphosphate depletion or presence of vanadate plus substrates. Additionally, some P/Q-and N-type blockers also reduced Ca influx to various extents (25–60%). Old cells were generally insensitive to L-type but not to non-L-type, blockers. Raising external K to about 70–80 mM reduced by 50–100% inhibition by L-type blockers. Incubation in a gluconate medium containing 150 mM Na+5 mM K practically abolished the action of L-type blockers, but only slightly reducing that by non-L-type. The results, clearly demonstrate presence of L- and R-type Ca channels, apparently occurring in different functional states in young and old cells. Other non-L-type channels were also demonstrated only by pharmacological means. A possible physiological role for these channels is discussed.  相似文献   

20.
9α-Hydroxy derivatives were prepared from 11 steroids of androstane and pregnane series using Rhodococcus erythropolis VKPM Ac-1740 culture with 0.5–10 g/l substrate concentration in the reaction mixture. 9α-Monohydroxylation proceeded regardless of the substituent structure at C17. However, the structure of the steroid molecule influenced the time of complete conversion of the substrate and the yield of the transformation product. 9α-Hydroxy-androstenedione was obtained in 35 h in a yield of 85% when the maximum concentration of androstenedione (AD) was 10 g/l. 9α-Hydroxy-AD was also formed by the actinobacterium cells entrapped in poly(vinyl alcohol) cryogel beads. Nine successive transformation cycles were carried out using immobilized cells at 4.0 g/l concentration of AD in the medium. The yield of 9α-hydroxy-AD formed during six cycles (from two to eight with the duration of each cycle for 22–24 h) was 98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号