首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Outbreaks of listeriosis and febrile gastroenteritis have been linked to produce contamination by Listeria monocytogenes. In order to begin to understand the physiology of the organism in a produce habitat, the ability of L. monocytogenes to attach to freshly cut radish tissue was examined. All strains tested had the capacity to attach sufficiently well such that they could not be removed during washing of the radish slices. A screen was developed to identify Tn917-LTV3 mutants that were defective in attachment to radish tissue, and three were characterized. Two of the three mutations were in genes with unknown functions. Both of the unknown genes mapped to a region predicted to contain genes necessary for flagellar export; however, only one of the two insertions caused a motility defect. The third insertion was found to be in an operon encoding a phosphoenolpyruvate-sugar phosphotransferase system. All three mutants were defective in attachment when tested at 30 degrees C; the motility mutant had the most severe phenotype. However, not all of the mutants were defective when tested at other temperatures. These results indicate that L. monocytogenes may use different attachment factors at different temperatures and that temperature should be considered an important variable in studies of the molecular mechanisms of Listeria fitness in complex environments.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The ActA protein of Listeria monocytogenes is a major virulence factor, essential for the recruitment and polymerization of host actin filaments that lead to intracellular motility and cell-to-cell spread of bacteria within the infected host. The expression of actA is tightly regulated and is strongly induced only when L. monocytogenes is within the host cytosol. Intracellular induction of actA expression is mediated through a single promoter element that directs the expression of a messenger RNA with a long (150 bp) 5' untranslated region (UTR). Deletion of the actA+3 to +130 upstream region was found to result in bacterial mutants that were no longer capable of intracellular actin recruitment or cell-to-cell spread, thus indicating that this region is important for actA expression. L. monocytogenes strains that contained smaller deletions (21-23 bp) within the actA upstream region demonstrated a range of actA expression levels that coincided with the amount of bacterial cell-to-cell spread observed within infected monolayers. A correlation appeared to exist between levels of actA expression and the ability of L. monocytogenes to transition from uniform actin accumulation surrounding individual bacteria (actin clouds) to directional assembly and the formation of actin tails. Bacterial mutants containing deletions that most significantly altered the predicted secondary structure of the actA mRNA 5' UTR had the largest reductions in actA expression. These results suggest that the actA 5' UTR is required for maximal ActA synthesis and that a threshold level of ActA synthesis must be achieved to promote the transition from bacteria-associated actin clouds to directional actin assembly and movement.  相似文献   

15.
16.
The intracellular movement of the bacterial pathogen Listeria monocytogenes has helped identify key molecular constituents of actin-based motility (recent reviews ). However, biophysical as well as biochemical data are required to understand how these molecules generate the forces that extrude eukaryotic membranes. For molecular motors and for muscle, force-velocity curves have provided key biophysical data to distinguish between mechanistic theories. Here we manipulate and measure the viscoelastic properties of tissue extracts to provide the first force-velocity curve for Listeria monocytogenes. We find that the force-velocity relationship is highly curved, almost biphasic, suggesting a high cooperativity between biochemical catalysis and force generation. Using high-resolution motion tracking in low-noise extracts, we find long trajectories composed exclusively of molecular-sized steps. Robust statistics from these trajectories show a correlation between the duration of steps and macroscopic Listeria speed, but not between average step size and speed. Collectively, our data indicate how the molecular properties of the Listeria polymerization engine regulate speed, and that regulation occurs during molecular-scale pauses.  相似文献   

17.
18.
Summary
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular parasite that invades and multiplies within diverse eukaryotic cell types. An essential pathogenicity determinant is its ability to move in the host cell cytoplasm and to spread within tissues by directly passing from one cell to another. The propulsive force for intracellular movement is thought to be generated by continuous actin assembly at the rear end of the bacterium. Moving bacteria that reach the plasma membrane induce the formation of long membranous protrusions that are internalized by neighbouring cells, thus mediating the spread of infection. The unrelated pathogens Shigella and Rickettsia use a similar process of actin-based motility to disseminate in infected tissues. This review focuses on the bacterial and cellular factors involved in the actin-based motility of L monocytogenes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号