首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold into their active and protease-resistant conformations once membrane passage is completed. The lipoprotein PrsA and the membrane proteins HtrA and HtrB facilitate the extracytoplasmic folding and quality control of exported proteins. Among the native exported proteins of B. subtilis are at least 10 proteases that have previously been implicated in the degradation of heterologous secreted proteins. Recently, we have shown that these proteases also degrade many native membrane proteins, lipoproteins, and secreted proteins. The present studies were therefore aimed at assessing to what extent these proteases also degrade extracytoplasmic catalysts for protein folding. To this end, we employed a collection of markerless protease mutant strains that lack up to 10 different extracytoplasmic proteases. The results show that PrsA, HtrA, and HtrB are indeed substrates of multiple extracytoplasmic proteases. Thus, improved protein secretion by multiple-protease-mutant strains may be related to both reduced proteolysis and improved posttranslocational protein folding and quality control.  相似文献   

3.
The stability of heterologous proteins secreted by gram-positive bacteria is greatly influenced by the microenvironment on the trans side of the cytoplasmic membrane, and secreted heterologous proteins are susceptible to rapid degradation by host cell proteases. In Bacillus subtilis, degradation occurs either as the proteins emerge from the presecretory translocase and prior to folding into their native conformation or after the native conformation has been reached. The former process generally involves membrane- and/or cell wall-bound proteases, while the latter involves proteases that are released into the culture medium. The identification and manipulation of factors that influence the folding of heterologous proteins has the potential to improve the yield of secreted heterologous proteins. Recombinant anthrax protective antigen (rPA) has been used as a model secreted heterologous protein because it is sensitive to proteolytic degradation both before and after folding into its native conformation. This paper describes the influence of the microenvironment on the trans side of the cytoplasmic membrane on the stability of rPA. Specifically, we have determined the influence of net cell wall charge and its modulation by the extent to which the anionic polymer teichoic acid is D-alanylated on the secretion and stability of rPA. The potential role of the dlt operon, responsible for D-alanylation, was investigated using a Bacillus subtilis strain encoding an inducible dlt operon. We show that, in the absence of D-alanylation, the yield of secreted rPA is increased 2.5-fold. The function of D-alanylation and the use of rPA as a model protein are evaluated with respect to the optimization of B. subtilis for the secretion of heterologous proteins.  相似文献   

4.
HtrA-type serine proteases participate in folding and degradation of aberrant proteins and in processing and maturation of native proteins. Mutation of the corresponding genes often confers a pleiotropic phenotype that can include temperature sensitivity, sensitivity to osmotic and oxidative stress, and attenuated virulence. There are three HtrA-type serine proteases, YkdA, YvtA, and YycK, encoded in the Bacillus subtilis genome. In this report we show that YkdA and YvtA display many similarities: their expression profiles during the growth cycle in wild-type and mutant backgrounds are very alike, with expression being directed by very similar promoters. Both are induced by temperature upshift and by heterologous amylases at the transition phase of the growth cycle. These characteristics are quite different for YycK, suggesting that it has a cellular function distinct from that of the other two proteases or that it performs the same function but under different conditions. We also show that inactivation of either ykdA or yvtA results in compensating overexpression of the other gene, especially during stress conditions, with a concomitant increase in resistance to heat and hydrogen peroxide stresses. Mutation of both ykdA and yvtA leads to growth defects and to thermosensitivity. The fact that their expression increases dramatically at the transition phase of the growth cycle under certain conditions suggests that the YkdA and YvtA proteases may function in the processing, maturation, or secretion of extracellular enzymes in B. subtilis.  相似文献   

5.
AIMS: To examine whether inactivation of the dlt operon and increased charge density of the wall enhances secretion of heterologous proteins in industrial strains of Bacillus licheniformis. METHODS AND RESULTS: The dltA gene of B. licheniformis was cloned, sequenced and mutated by inserting a chloramphenicol acetyl transferase (cat) gene cassette. The mutation facilitated growth in the late exponential growth phase, increased endogenous autolysis and decreased resistance to a cationic peptide, polylysine. It was observed that dltA mutation increased the production of cyclodextrin glycosyltransferase (CGTase) by 1.5- to sevenfold depending on the growth phase, but decreased the production of penicillinase by twofold. CONCLUSIONS AND SIGNIFICANCE: The results suggest that the d-alanylation of teichoic acids is an element that can be used to improve the production of some secretory proteins in industrial applications based on this important industrial microorganism.  相似文献   

6.
Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis alpha-amylase (AmyL), Escherichia coli TEM beta-lactamase (Bla), human pancreatic alpha-amylase (HPA), and a lysozyme-specific single-chain antibody. The same expression and secretion signals were used for all four of these proteins. Notably, all identified bottlenecks relate to late stages in secretion, following translocation of the preproteins across the cytoplasmic membrane. These bottlenecks include processing by signal peptidase, passage through the cell wall, and degradation in the wall and growth medium. Strikingly, all translocated HPA was misfolded, its stability depending on the formation of disulfide bonds. This suggests that the disulfide bond oxidoreductases of B. subtilis cannot form the disulfide bonds in HPA correctly. As the secretion bottlenecks differed for each heterologous protein tested, it is anticipated that the efficient secretion of particular groups of heterologous proteins with the same secretion bottlenecks will require the engineering of specifically optimized host strains.  相似文献   

7.
The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture medium. This limits yields and increases downstream processing time and costs. In contrast, Bacillus spp. secrete native enzymes directly into the culture medium at grams‐per‐litre quantities, although the yields of some recombinant proteins are severely limited. We have engineered the Bacillus subtilis genome to generate novel strains with precise deletions in the genes encoding ten extracytoplasmic proteases that affect recombinant protein secretion, which lack chromosomal antibiotic resistance genes. The deletion sites and presence of single nucleotide polymorphisms were confirmed by sequencing. The strains are stable and were used in industrial‐scale fermenters for the production of the Bacillus anthracis vaccine protein, protective antigen, the productivity of which is extremely low in the unmodified strain. We also show that the deletion of so‐called quality control proteases appears to influence cell‐wall synthesis, resulting in the induction of the cell‐wall stress regulon that encodes another quality control protease.  相似文献   

8.
9.
芽孢杆菌是很有潜力的分泌型基因工程宿主菌。本文概述了利用芽孢杆菌分泌表达外源基因时,影响目的蛋白产率的一些主要因素,如蛋白酶水解作用、缺乏适宜的分子伴侣、信号肽的选择不当等,并讨论了相应的解决对策。  相似文献   

10.
Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis α-amylase (AmyL), Escherichia coli TEM β-lactamase (Bla), human pancreatic α-amylase (HPA), and a lysozyme-specific single-chain antibody. The same expression and secretion signals were used for all four of these proteins. Notably, all identified bottlenecks relate to late stages in secretion, following translocation of the preproteins across the cytoplasmic membrane. These bottlenecks include processing by signal peptidase, passage through the cell wall, and degradation in the wall and growth medium. Strikingly, all translocated HPA was misfolded, its stability depending on the formation of disulfide bonds. This suggests that the disulfide bond oxidoreductases of B. subtilis cannot form the disulfide bonds in HPA correctly. As the secretion bottlenecks differed for each heterologous protein tested, it is anticipated that the efficient secretion of particular groups of heterologous proteins with the same secretion bottlenecks will require the engineering of specifically optimized host strains.  相似文献   

11.
In this study, we examined the effects of modifying the C-terminal region of the SecA protein on the production of heterologous proteins in Bacillus subtilis. SecA was selected as a candidate among the components of the Sec system due to its ability to interact directly with both the precursors and membrane translocases. A phylogenetic comparison demonstrated that the C-terminal region is not well conserved among eubacterial SecA proteins. The deletion of the 61 amino acids at the C-terminal region led to an 83% increase in extracellular alkaliphilic Bacillus sp. thermostable alkaline cellulase (Egl-237) activity. Moreover, the productivity of human interferon α (hIFN-α2b) was increased by 2.2-fold compared to the wild-type SecA, by deletion of these 61 amino acids. We indicated that the deletion of the C-terminal domain (CTD) of SecA enhanced the secretion of two different heterologous protein, Egl-237 and hIFN-α2b. This study provides a useful method to enhance the extracellular production of heterologous proteins in B. subtilis.  相似文献   

12.
The secretion of proteins from Bacillus subtilis was studied under physiologically well-defined conditions in continuous cultures at a range of specific growth rates. The kinetics of secretion was analysed by using pulse-chase and immunoprecipitation techniques that allowed both processing and release to be monitored. Growth conditions were selected that were known to lead to significant changes in the anionic polymer composition of the cell wall. Under magnesium limitation only low levels of native proteins were released into the growth medium. In contrast, much higher amounts of released protein were observed under phosphate limitation. Although synthesis of native secretory proteins appeared to be highly regulated, only minor changes in the secretion of heterologous proteins were detected. Comparable kinetics of protein release of cells grown under different conditions indicated similar cell wall permeabilities. The large changes in the amounts of released proteins were not reflected in the production of chaperones and components required for protein secretion. The data suggest that the capacity of the secretion machinery is not a major limiting step in the export of native secretory proteins. Received: 23 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

13.
Developments in the use of Bacillus species for industrial production   总被引:13,自引:0,他引:13  
Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.  相似文献   

14.
15.
Xylanase A from Bacillus sp. BP7, an enzyme with potential applications in biotechnology, was used to test Pir4, a disulfide bound cell wall protein, as a fusion partner for the expression of recombinant proteins in standard or glycosylation-deficient mnn9 strains of Saccharomyces cerevisiae. Five different constructions were carried out, inserting in-frame the coding sequence of xynA gene in that of PIR4, with or without the loss of specific regions of PIR4. Targeting of the xylanase fusion protein to the cell wall was achieved in two of the five constructions, while secretion to the growth medium was the fate of the gene product of one of the constructions. In all three cases localization of the xylanase fusion proteins was confirmed both by Western blot and detection with Pir-specific antibodies and by xylanase activity determination. The cell wall-targeted fusion proteins could be extracted by reducing agents, showing that the inclusion of a recombinant protein of moderate size does not affect the way Pir4 is attached to the cell wall. Also, the construction that leads to the secretion of the fusion protein permitted us to identify a region of Pir4 responsible for cell wall retention. In summary, we have developed a Pir4-based system that allows selective targeting of an active recombinant enzyme to the cell wall or the growth medium. This system may be of general application for the expression of heterologous proteins in S. cerevisiae for surface display and secretion.  相似文献   

16.
Human interferon-β (hIFN-β) was used as a heterologous model protein to investigate the effects of the Bacillus subtilis AmyE propeptide and co-expression of PrsA in enhancing the secretion of heterologous proteins in B. subtilis. Secretion and activity of hIFN-β with AmyE propeptide increased by more than four-fold compared to that without AmyE propeptide. Moreover, under conditions of co-expressed PrsA, the secretion production and activity of hIFN-β with AmyE propeptide increased by more than 1.5-fold. AmyE propeptide and co-expression of PrsA thus have an additive effect on enhancing the production of the hIFN-β in B. subtilis.  相似文献   

17.
Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously been achieved by using either protease-deficient strains or addition of protease inhibitors to B. subtilis cultures. Notably, the effects of genetic and chemical inhibition of proteases have thus far not been compared in a systematic way. In the present studies, we therefore compared the exoproteomes of cells in which extracellular proteases were genetically or chemically inactivated. The results show substantial differences in the relative abundance of various extracellular proteins. Furthermore, a comparison of the effects of genetic and/or chemical protease inhibition on the stress response triggered by (over) production of secreted proteins showed that chemical protease inhibition provoked a genuine secretion stress response. From a physiological point of view, this suggests that the deletion of protease genes is a better way to prevent product degradation than the use of protease inhibitors. Importantly however, studies with human interleukin-3 show that chemical protease inhibition can result in improved production of protease-sensitive secreted proteins even in mutant strains lacking eight extracellular proteases.  相似文献   

18.
19.
异源蛋白质分泌效率低限制了重组酿酒酵母的多种药用蛋白和工业酶生产。挖掘促进蛋白质生物合成和分泌的关键基因,是提高异源蛋白质生产效率的重要手段。酿酒酵母细胞壁完整性影响异源蛋白质分泌,本研究利用基于CRISPR/Cas9的基因组编辑技术,破坏了重组酿酒酵母Y294-BGL1中参与细胞壁合成的未知功能基因UTH1,发现所获得的突变体胞外β-葡萄糖苷酶酶活比出发菌株提高112.9%,而细胞壁完整性下降。对促进产酶的分子机理进行探索,发现突变体产酶条件下与细胞壁完整性相关的关键基因和与蛋白质分泌途径相关的基因转录出现明显差异,提示UTH1基因破坏不仅影响细胞壁完整性关键基因的表达,也影响蛋白质分泌途径。本文的研究结果有助于深入理解UTH1的基因功能,并为构建异源蛋白质高分泌酵母菌株提供了借鉴。  相似文献   

20.
The gram-positive bacterium Bacillus subtilis secretes high levels of proteins into its environment. Most of these secretory proteins are exported from the cytoplasm in an unfolded state and have to fold efficiently after membrane translocation. As previously shown for alpha-amylases of Bacillus species, inefficient posttranslocational protein folding is potentially detrimental and stressful. In B. subtilis, this so-called secretion stress is sensed and combated by the CssRS two-component system. Two known members of the CssRS regulon are the htrA and htrB genes, encoding potential extracytoplasmic chaperone proteases for protein quality control. In the present study, we investigated whether high-level production of a secretory protein with two disulfide bonds, PhoA of Escherichia coli, induces secretion stress in B. subtilis. Our results show that E. coli PhoA production triggers a relatively moderate CssRS-dependent secretion stress response in B. subtilis. The intensity of this response is significantly increased in the absence of BdbC, which is a major determinant for posttranslocational folding of disulfide bond-containing proteins in B. subtilis. Our findings show that BdbC is required to limit the PhoA-induced secretion stress. This conclusion focuses interest on the BdbC-dependent folding pathway for biotechnological production of proteins with disulfide bonds in B. subtilis and related bacilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号