首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addresses the question of whether tocopherol mobilization during exercise could be explained by a lipolysis effect. Nine healthy male subjects were submitted to dynamic exercise of graded intensity (45, 60, 75% VO2max) on a cycle ergometer after ingestion of either a placebo or 40 mg propranolol as beta-blocker. Plasma tocopherol concentration increased toward a peak value reached during or at the end of exercise. The magnitude of this increase did not differ in the two experimental conditions while plasma free fatty acids concentration was lowered under beta-adrenergic blockade by propranolol. From these results, we conclude that tocopherol mobilization during dynamic exercise does not depend on lipolysis.  相似文献   

2.
The concentrations and distributions of major lipids (cholesterol, phospholipid, and triglyceride), tocopherol and carotenoids were determined in the plasma lipoprotein fractions (VLDL, LDL, and HDL) of (1) normal human subjects, (2) patients with hyperlipoproteinemia, and (3) patients with erythropoietic protoporphyria treated with oral beta-carotene and/or alpha-tocopherol. The distribution of tocopherol (in percent) was most closely correlated with the distribution of total lipids in the individual lipoproteins, while the major portion of beta-carotene was present in the low density lipoproteins, irrespective of the lipid distribution in the lipoproteins (except for one subject with hyperchylomicronemia). The alpha-tocopherol and beta-carotene concentrations of plasma and RBC in patients treated with tocopherol and carotene were determined periodically for a one-year period. Plasma and RBC tocopherol concentrations showed a rapid, parallel increase in response to tocopherol supplementation. In contrast, the plasma and RBC carotene concentrations showed a much slower and nonparallel increase in response to carotene administration. When carotene supplementation was stopped, the elevated carotene levels in both plasma and RBC persisted for several months; the elevated plasma carotene level persisted longer than the raised RBC carotene levels. These results suggest that alpha-tocopherol and beta-carotene are transported differently in the circulation and that the tissue storage and mobilization of these compounds are different.  相似文献   

3.
Vitamin E (α-tocopherol) and tocopherol acetate produced a slightly increased amount of thromboxane in treated compared to untreated platelets. In tocopherol acetate-treated platelets significantly more lipoxygenase products were produced. α-tocopherol induced an increased, but not significant, production of thromboxane B2 during blood clotting. α-tocopherol was not found to affect platelet phospholipase activity as determined by its effect on the release of labelled arachidonic acid from platelet phospholipids by challenging the platelets with calcium ionophore A23,187. α-tocopherol potentiated the incorporation of labelled arachidonate in the platelet phospholipids. Inspite of having no effect on the arachidonic acid cascade in platelets, α-tocopherol inhibited aggregation induced by several aggregating agents including A23,187. Inhibition of aggregation may be explained by the ability of α-tocopherol to inhibit intracellular mobilization of sequestered calcium from the dense tubular system to the cytoplasm.  相似文献   

4.
Antioxidative peculiarities of the effect of tocopherol derivatives are considered. Attempts are made to reveal interrelation between tocopherol pharmacological effect and antiradical activity of its derivatives exemplified by an elementary reaction of tocopherol interaction with free peroxide radicals (FR). It is shown that the presence of free hydroxyl groups, number and location of CH3--groups in tocopherol benzol ring produce a significant effect on tocopherol ability to react with FR. The length of lateral phitil chain produces no appreciable effect on the rate of tocopherol reaction with free radicals. The values of energy activation in this reaction are calculated for tocopherol derivatives. Correlation between biological and antiradical activity of tocopherol homologs is shown. The absence of such correlation for tocopherol analogs is explained by the difference in the ability of analogs to be incorporated into biological membranes. Possible tocopherol regulations of the rates of free radical processes proceeding in lipid membranes are considered.  相似文献   

5.
Sunflower (Helianthus annuus L.) seeds have a tocopherol profile dominated by alpha-tocopherol. The objective of this research was to study the dynamics of tocopherol accumulation in sunflower lines with altered total tocopherol content or tocopherol profile. Developing seeds were sampled at regular intervals in two lines with reduced and increased total tocopherol content, respectively, and six lines with modified tocopherol profiles. The line with reduced tocopherol content showed a tocopherol accumulation rate reduced by half, whereas the line with increased tocopherol content showed a tocopherol accumulation rate twofold higher than the control. In the three cases, alpha-tocopherol followed a sigmoid accumulation pattern. Modified tocopherol profiles were expressed at early stages of tocopherol accumulation. In most lines with modified profiles, tocopherol accumulation pattern differed from the alpha-tocopherol lines, with maximum tocopherol content at 18 or 21 days after flowering (DAF) that was reduced to reach a plateau from 33 or 36 DAF onward. Such a reduction was caused by continued dry matter accumulation after tocopherol accumulation ceased or slowed down. In lines with increased levels of beta-tocopherol or both gamma- and delta-tocopherol, the synthesis of beta- and delta-tocopherol started and stopped earlier than the synthesis of alpha- and gamma-tocopherol, respectively.  相似文献   

6.
M Z Lai  N Düzgüne?  F C Szoka 《Biochemistry》1985,24(7):1646-1653
The role of the hydroxyl groups of cholesterol and tocopherol in mediating their interaction with phospholipid bilayers has been a subject of considerable interest. We have examined this question by using derivatives of cholesterol and tocopherol in which the hydroxyl group is esterified to succinate. The hemisuccinate esters of cholesterol and alpha-tocopherol can be readily incorporated into phospholipid membranes and in fact can by themselves form closed membrane vesicles as demonstrated by the encapsulation of [3H]sucrose. The thermotropic behavior of mixtures containing each succinate ester and phospholipid was studied by differential scanning calorimetry. The effect of cholesteryl hemisuccinate on the thermotropic properties of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylethanolamine is very similar to that of cholesterol. This indicates that the 3 beta-OH is not required for the formation of a cholesterol-phospholipid complex. In mixtures of tocopherol acid succinate and phospholipids the peak transition temperature is progressively shifted to lower temperatures as the mole fraction of alpha-tocopherol succinate is increased, while the enthalpy of the transition is only slightly affected. At a tocopherol succinate/phospholipid molar ratio of 9/1 a phase transition is still detectable. A comparison between tocopherol succinate and tocopherol indicates that the substitution of the hydroxyl group reduces the interaction of tocopherol with phospholipids to a small but measurable extent. Thus, the hydroxyl group of tocopherol is more important than the hydroxyl group of cholesterol in influencing their interactions with phospholipids.  相似文献   

7.
Human platelets possess active lipoxygenase and cyclooxygenase which convert arachidonic acid to (12S)-12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) plus (12S)-12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) and thromboxane B2 plus 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT), respectively. When platelet homogenates were incubated with arachidonate, there was a rapid consumption of platelet tocopherol. Time course analysis revealed that within 0.5 min, over half of arachidonate and tocopherol were metabolized. Mass formation of 12-HPETE and 12-HETE or thromboxane B2 and HHT exceeded that of the mass of tocopherol oxidized. Preincubation with the lipoxygenase inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) completely abolished this arachidonate-induced tocopherol oxidation whereas cyclooxygenase inhibitors (indomethacin and aspirin) further potentiated tocopherol oxidation, indicating that this oxidation is closely linked with platelet 12-lipoxygenase activity. Incubation with lipoxygenase metabolites of arachidonic acid showed that only 12-HPETE caused a rapid tocopherol oxidation which was followed by a gradual tocopherol regeneration. By using nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor which is also a strong reductant, over 60% of the arachidonate-induced oxidized tocopherol was regenerated. Tocopherol regeneration declined with increasing oxidation time induced by arachidonate, and after 30-60 min virtually no regeneration could be observed, suggesting that the precursor molecule was unstable. We postulate that the precursor molecule is the tocopheroxyl radical. In the presence of ETYA, a lipoxygenase inhibitor without antioxidant properties, either ascorbate or GSH provided significant tocopherol regeneration. Kinetic studies showed that tocopherol regeneration after the addition of ascorbate was essentially completed by 1 min. By contrast, GSH addition caused a steady increase in tocopherol which peaked after 10 min of its addition. To determine whether this rapid regeneration is chemical or enzymic, regeneration was studied in the presence of chloroform and methanol. Comparison of various reductants in this denaturing condition for enzymes showed that ascorbate and NDGA afforded significant regeneration whereas GSH was ineffective, indicating that there are distinct enzymic and non-enzymic mechanisms for tocopherol regeneration. This study provides direct evidence from mass analysis that tocopherol can be regenerated in human cell homogenates. This finding implies that maintenance of membrane tocopherol status may be an essential function of ascorbate and GSH which operate in concert to ensure maximum membrane protection against oxidative damage.  相似文献   

8.
A relatively rapid procedure is described for the spectrophotometric determination of total tocopherol in red blood cells (RBC) based on a modification of the original Emmerie-Engel reaction. The critical feature in this method is the presence of a large amount of an added antioxidant, pyrogallol or ascorbic acid, during the saponification and extraction stages and the use of thin-layer chromatography for tocopherol purification. The total tocopherol levels of plasma and erythrocytes were determined for a number of human subjects, for patients with abetalipoproteinemia, and for rats. It was found that these levels had a wide range in normal human subjects but that the ratio of RBC to plasma tocopherol was relatively constant and equal to 0.18, uncorrected, and 0.21 when both RBC and plasma values were corrected to 100% recovery. The RBC-to-plasma ratio for rats was 0.39. The accuracy of this ratio determined by the spectrophotometric procedure was verified by measuring the distribution of [(14)C]tocopherol in RBC and plasma when radioactive vitamin E was introduced into the blood by both in vitro and in vivo techniques. The addition of radioactive tocopherol to RBC or plasma at the initial stage of the analysis permits an accurate determination of the total tocopherol in RBC or plasma by calculations based on the recovery of the added isotope. This procedure for erythrocyte tocopherol analysis is compared with a gas-liquid chromatographic method in current use.  相似文献   

9.
The simultaneous exchange of (3h)tocopherol and (14C)cholesterol between rat plasma, rat plasma lipoproteins, and RBC was studied in vitro to compare quantitavely (a) the fractional exchange rates and (b) the half-times for isotope equilibration. In all incubations of RBC with plasma or with plasma lipoprotein fractions, (14C)cholesterol approached equilibrium more rapidly than (3H)tocopherol. When the RBC contained the initial radioactivity, the half-times for equilibration with plasma of cholesterol and of tocopherol were 1.0 and 2.2 hr, respectively. However, the fractional exchange rates (KRBC leads to plasma) were 0.097/hr for cholesterol and 0.188/hr for tocopherol, indicating that the RBC tocopherol pool is turning over almost twice as rapidly as the RBC cholesterol pool. The rat plasma lipoproteins were separated into five fractions by successive ultracentrifugation. Only two fractions, the high density lipoproteins (d 1.063-1.21) and the very low density lipoproteins (d is less than 1.006), participated to a significant extent in the exchange of either tocopherol or cholesterol with RBC. Cholesterol exchange between individual rat plasma lipoproteins and RBC had the same half-times for isotope equilibrium for the very low and high density lipoproteins, and the RBC fractional exchange rates were proportional to the amount of cholesterol in the lipoproteins. In tocopherol exchange between individual rat plasma lipoproteins and RBC, the very low density lipoprotein tocopherol did not equilibrate completely with the RBC. However, the initial rate of tocopherol exchange appeared to be the same for very low and high density lipoproteins. The very low density lipoproteins were disrupted by repeated freezing and thawing or by dehydrating and rehydrating, and analysis of the resulting lipoproteins indicated that free cholesterol was associated more closely than tocopherol with the phospholipid-protein portion of the molecule, which is thought to be on the surface. This difference in distribution of tocopherol and free cholesterol within very low density lipoproteins could account for their different rates of exchange and for the nonequilibrium of tocopherol between RBC and very low density lipoproteins.  相似文献   

10.
Tocopherols are amphipathic antioxidants synthesized exclusively by photosynthetic organisms. Tocopherol levels change significantly during plant growth and development and in response to stress, likely as a consequence of the altered expression of pathway-related genes. Homogentisate phytyltransferase (HPT) is a key enzyme limiting tocopherol biosynthesis in unstressed Arabidopsis leaves (E. Collakova, D. DellaPenna [2003] Plant Physiol 131: 632-642). Wild-type and transgenic Arabidopsis plants constitutively overexpressing HPT (35S::HPT1) were subjected to a combination of abiotic stresses for up to 15 d and tocopherol levels, composition, and expression of several tocopherol pathway-related genes were determined. Abiotic stress resulted in an 18- and 8-fold increase in total tocopherol content in wild-type and 35S::HPT1 leaves, respectively, with tocopherol levels in 35S::HPT1 being 2- to 4-fold higher than wild type at all experimental time points. Increased total tocopherol levels correlated with elevated HPT mRNA levels and HPT specific activity in 35S::HPT1 and wild-type leaves, suggesting that HPT activity limits total tocopherol synthesis during abiotic stress. In addition, substrate availability and expression of pathway enzymes before HPT also contribute to increased tocopherol synthesis during stress. The accumulation of high levels of beta-, gamma-, and delta-tocopherols in stressed tissues suggested that the methylation of phytylquinol and tocopherol intermediates limit alpha-tocopherol synthesis. Overexpression of gamma-tocopherol methyltransferase in the 35S::HPT1 background resulted in nearly complete conversion of gamma- and delta-tocopherols to alpha- and beta-tocopherols, respectively, indicating that gamma-tocopherol methyltransferase activity limits alpha-tocopherol synthesis in stressed leaves.  相似文献   

11.
Tocopherol cyclase is a rate-limiting enzyme involved in tocopherol biosynthesis. The full-length cDNA encoding tocopherol cyclase (designated as LsTC) was cloned from lettuce (Lactuca sativa) for the first time by rapid amplification of cDNA ends (RACE) and characterized by means of quantitative RT-PCR. The full-length cDNA of LsTC was 1675 bp, with an open reading frame of 1521 bp, encoding a tocopherol cyclase protein of 506 amino acids, with a calculated molecular mass of 56.76 kD and an isoelectric point of 6.49. Comparative analysis revealed that LsTC has a close similarity with tocopherol cyclases from other plant species. Bioinformatic analysis indicated that LsTC shares a common evolutionary origin based on sequence and has the closest relationship to tocopherol cyclase from Helianthus annuus. Quantitative RT-PCR analysis suggested that expression of LsTC is induced and strengthened by oxidative stresses, such as strong light and drought. This cloning and characterization of LsTC will be helpful for further understanding of its role in the tocopherol biosynthesis pathway and provide a candidate gene for metabolic engineering of vitamin E.  相似文献   

12.
The incorporation of radioactive alpha tocopherol by various brain regions of wild type and apolipoprotein E (apoE)-deficient mice was investigated. Labeled tocopherol was injected into the lateral cerebral ventricles of 11 weeks old, male mice. Radioactive cholesterol injected simultaneously was used as an internal standard to account for experimental variability. Most areas of the brain of apoE-deficient mice took up less of alpha tocopherol per mg of protein than wild type animals. However, specific activity of alpha tocopherol was higher in cerebellum, pons, hypothalamus, midbrain and cerebral cortex in apoE-deficient brains than the wild type. This could be due to (a) the lower levels of alpha tocopherol in apoE-deficient brain and (b) reductions in the clearance and transport of tocopherol (possibly mediated by apoE). Tocopherol uptake by hippocampus was unusual since it was lower in apoE deficiency whether the data were expressed as specific activity or per mg of protein. Nearly all of the injected alpha tocopherol remained unchanged in the brains of both apoE-deficient and wild type animals suggesting low turnover. Overall, the current data reinforce the hypothesis that apoE is a key protein involved with the transport and/or retention of alpha tocopherol in brain.  相似文献   

13.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that α‐tocopherol increased the PSA‐NCAM‐positive granule cell number in adult rat DG, suggesting that α‐tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under α‐tocopherol supplementation conditions. PSA‐NCAM expression was evaluated by Western blotting, evaluation of PSA‐NCAM‐positive granule cell density, and morphometric analysis of PSA‐NCAM‐positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA‐NCAM expression has been found to be related to PKCδ activity and α‐tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA‐NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in α‐tocopherol‐treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho‐PKC Pan and phospho‐PKCδ, demonstrating that α‐tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCδ was lower in α‐tocopherol‐treated rats than in controls, while no changes were found in PKCδ expression. These results demonstrate that α‐tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCδ inhibition. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

14.
Our previous reports show that apolipoprotein E (apoE) influences the dynamics of alpha tocopherol (vitamin E) in brain. In this investigation, the patterns of depletion of alpha tocopherol from tissues of apoE deficient and wild type mice were compared after the animals were fed vitamin E deficient diets. Alpha tocopherol concentrations in specific regions of the brain and peripheral tissues at different times were determined by HPLC with electrochemical detection. ApoE deficiency significantly retarded the rate of depletion of alpha tocopherol from all regions of the brain. In addition, comparison of the rates of depletion of alpha tocopherol in both apoE deficient and wild type animals showed that cerebellum behaved differently from other areas such as cortex, hippocampus and striatum. This reinforces the uniqueness of cerebellum with regard to vitamin E biology. Patterns of depletion of tocopherol from peripheral tissues were different from brain. Serum tocopherol was higher in apoE deficient animals and remained higher than wild type during E deficiency. Depletion of liver tocopherol also tended to be unaffected by apoE deficiency. Our current and previous observations strongly suggest that apoE has an important role in modulating tocopherol concentrations in brain, probably acting in concert with other proteins as well.  相似文献   

15.
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from alpha-tocopherol to gamma-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.  相似文献   

16.
Phytol is one of the key precursors for tocopherol synthesis in plants, however, the underlying mechanisms concerning the accumulation of tocopherol remain poorly understood. In this study, qVE5, a major QTL affecting tocopherol accumulation in maize kernels was identified via a positional cloning approach. qVE5 encodes a protochlorophyllide oxidoreductase (ZmPORB2), which localizes to the chloroplast. Overexpression of ZmPORB2 increased tocopherol content in both leaves and kernels. Candidate gene association analysis identified a 5/8‐bp insertion/deletion (InDel058) in the 5′ untranslated region (UTR) as the causal polymorphism in affecting ZmPORB2 expression and being highly associated with tocopherol content. We showed that higher expression of ZmPORB2 correlated with more chlorophyll metabolites in the leaf following pollination. RNA‐sequencing and metabolic analysis in near isogenic lines (NILs) support that ZmPORB2 participates in chlorophyll metabolism enabling the production of phytol, an important precursor of tocopherol. We also found that the tocopherol content in the kernel is mainly determined by the maternal genotype, a fact that was further confirmed by in vitro culture experiments. Finally, a PCR‐based marker based on Indel058 was developed in order to facilitate the high tocopherol (vitamin E) maize breeding.  相似文献   

17.
A method for the analysis of tocopherol in human adipose tissue using high performance liquid chromatography and fluorescence spectrometry is described; results are expressed relative to total triglyceride content measured by the reaction of the methylated fatty acids with hydroxylamine and ferric chloride. The tocopherol contents of adipose tissue obtained at surgery and by the needle aspiration biopsy technic of ambulatory human subjects (who did not take supplemental vitamin E) were found to be virtually identical. The tocopherol content of adipose tissue by the needle aspiration technic was 262 +/- 33 ng tocopherol/mg triglyceride; this value was increased twofold or more in persons ingesting additional vitamin E. Patients with abetalipoproteinemia (ABL) who absorb tocopherol poorly and have extremely low levels of plasma and red blood cell tocopherol also had a low concentration of adipose tissue tocopherol. However, some ABL patients on massive supplementation with vitamin E (approximately 10 g daily) did achieve normal concentrations of adipose tissue tocopherol.  相似文献   

18.
19.
Vitamin E is a scavenger molecule trapping free radicals in biological membranes. However, it has also been shown to elicit the formation of reactive oxygen species and apoptosis in cancer cells. In this study, we tested the ability of alpha-tocopherol, tocopherol acetate, tocopherol phosphate and tocopherol succinate (TS) to modulate gap junctional intercellular communication in the rat liver epithelial cell line IAR203, as measured by the transfer of Lucifer yellow. While alpha-tocopherol, tocopherol acetate and tocopherol phosphate moderately reduced the dye transfer, TS at 10 and 25 microM strongly inhibited it, probably via the induction of the hypophosphorylation of connexin 43. Our results show that, besides their interesting antioxidant properties, vitamin E analogs, especially TS, can exert adverse effects on gap junctional intercellular communication, which could explain their controversial effects in carcinogenesis.  相似文献   

20.
Three experiments were carried out with male broiler chickens reared from day‐ old to 6 weeks of age on semi‐purified diets containing 10% fresh (Expt. 1 and 3) or oxidized (Expt. 2) re‐esterified triglycerides with a fatty acid composition similar to that of soya bean oil containing increasing concentrations of either a mixture of d‐α‐, γ‐, δ‐tocopherylacetate (d‐tocopherols) of natural source or dl‐α‐ tocopheryl acetate (dl‐tocopherol). In Expt. 1 and 2 the mixture of d‐tocopherols consisted of 35.7% d‐α‐, 45.3% d‐γ‐ and 19.0% d‐δ‐, while in Expt. 3 the distribution was 25.3% d‐α‐, 28.1% d‐γ‐and 10.8% d‐γ‐ in 35.8% re‐ esterified triglycerides. The relative biopotency of d‐α‐: γ‐: δ‐tocopherol was anticipated to be 100: 25: 1, whereas that of dl‐a‐tocopherol was 74% relative to d‐ a‐tocopherol. The experiments demonstrate that the results obtained for the biological activity depend on the response parameters chosen. With respect to gain in weight, feed conversion, relative organ weight, packed cell volume (PCV), ELP (erythrocytelipidperoxidation), plasma activities of glutamate‐oxaloacetate‐transaminase (GOT), creatine kinase (CK) and glutathione peroxidase (GSH‐Px) and plasma Na+ concentration, the mixture of natural source tocopherols was identical to that of dl‐α‐tocopheryl acetate, although the concentration of a‐ tocopherol was only about one third of that of dl‐α‐tocopherol. Differences between natural source and synthetic tocopherols were expectedly observed with respect to plasma concentrations of α‐, γ‐, δ‐tocopherol. Differences between the two forms as to muscular dystrophy, in vitro haemolysis and potassium concentration in plasma were ambigous. It is suggested that the function of d‐α‐, γ‐, δ‐tocopherol in erythrocyte fragility and skeletal muscle structure should be compared to that of dl‐α‐tocopherol in future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号