首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contents and structural characteristics of water-soluble polysaccharides such as polyuronans, fucoidans and laminarans dependent on species, age of algae and the year of collection were studied for four species of brown algae—Alaria fistulosa, A. marginata, Fucus evanescens and Laminaria cichorioides, widespread on the Russian Far-East. The mature L. cichorioides was shown to be the richest source of both laminarans and fucoidans, F. evanescens—fucoidans. However, the Alaria species and young age algae F. evanescens contained practically polyuronans only. Alaria marginata and A. fistulosa were revealed to have a little of fucoidan and negligible quantity of laminaran (less than 1%). Contents of water-soluble polyuronans in A. fistulosa were approximately 2 times more, than in A. marginata. Water-soluble polyuronans of these seaweeds are represented by polymannuronans (Mm about 40 kDa). It was shown, that the young age algae F. evanescens contains the water-soluble low-molecular mass mannuronans along with the high-molecular mass laminarans.

Stimulating action of polyuronans on the sea urchin developing embryos was revealed.  相似文献   


2.
The effect of tidal emersion on survivorship, photosynthesis and embryonic development was studied in 8 h old zygotes and 7 d old embryos of the intertidal brown alga Pelvetia fastigiata (J. Ag.) DeToni. Zygotes and embryos were outplanted for single low tides in the intertidal zone on the central coast of California (U.S.A.) during June, 1990. Both zygotes and embryos exhibited close to 100% survival when outplanted beneath the canopy of adult P. fastigiata. Embryos (7 d old) also exhibited high survival when outplanted in a red algal turf, the microhabitat where most successful recruitment occurs. However, zygotes (8 h old) experienced high mortality (65–90%) when outplanted in the turf microhabitat. Embryos and zygotes that survived emersion experienced sub-lethal stress that temporarily impaired light-saturated photosynthesis when plants were reimmersed in seawater. The effects of sub-lethal stress were more pronounced in 8 h old zygotes than 7 d embryos, and more severe in the turf microhabitat than beneath the adult Pelvetia canopy. Zygotes outplanted in the red algal turf did not re-establish net photosynthesis until at least 6 h after re-immersion. Photosynthesis was less inhibited in 8 h old zygotes outplanted beneath the adult Pelvetia canopy, and recovered to control (non-emersed) levels within 3 h of re-immersion. Embryos (7 d old) were able to achieve positive net photosynthesis immediately on re-immersion after emersion in the turf or canopy microhabitats. Emersion also retarded the rate of embryonic development in 8 h old zygotes, delaying the formation of primary rhizoids, which help to attach the plant to the substrate. For example, at 19 h post-fertilization, 75% of control (non-emersed) zygotes had developed rhizoids, compared to 3% and 30% for zygotes outplanted in the turf and canopy microhabitats. The different emersion responses of 8 h old zygotes and 7 d old embryos appeared to be related to their ability to tolerate cellular dehydration. Overall, our data suggest that the effects of sub-lethal stresses may have been underestimated in studies of intertidal ecology.  相似文献   

3.
A red algal turf is often found just below the barnacle/limpet zone of many European shores, especially on steep shores of moderate exposure. The hypothesis that grazing by limpets determines the upper limit of distribution of this red algal turf was tested on moderately exposed shores in Portugal and Britain. We also aimed to assess whether the grazing effect is modified at various spatial scales. Grazers were excluded by fences, with half-fenced and unfenced controls. Exclusion plots were rapidly colonised by green ephemeral algae in the months immediately after the beginning of the experiment (summer); these algae were later replaced by perennial algae. The percentage cover of turf-forming macroalgae showed a significant increase at both locations. The upper limit of distribution extended more than 50 cm on most of the shores studied. In contrast, control and half-fenced plots remained devoid of algae. After 2 years, ungrazed plots were mainly colonised by a red algal turf (e.g. Caulacanthus ustulatus, Gelidium spp., Laurencia pinnatifida) in Portugal, while canopy cover (Fucus serratus and Himanthalia elongata) dominated in Britain in marked contrast to the grazed plots. Physical factors acting at both local and geographical scales may explain these differences. However, although physical factors probably have an important influence on the identity, size and abundance of sublittoral fringe macroalgae, grazers play a major role in directly setting their upper limits. The effect of grazing by limpets was not consistent for all of the morphological algal groups and spatial scales considered in the present study. The effect of grazing on the cover of turf algae varied between Portugal and Britain (location scale), while effects on ephemeral and canopy algal cover varied at the shore scale within location.  相似文献   

4.

Herbivorous fish are key to maintaining a balance between coral and algae on reefs, where reefs with greater herbivore biomass often show lower algal cover. For reefs worldwide, algal turf cover is expanding and is increasingly used as an indicator of disturbance. Water depth affects reef fish composition; thus, it may be expected that herbivory could also differ by depth. We examined relationships between algal turf cover and biomass (g m−2), density (# m−2) and size (cm) of herbivore groups (grazers, browsers and scrapers) across shallow (< 6 m), mid (6–18 m) and deep (18–30 m) coral reefs in the Main Hawaiian Islands. We find that across all depth classes, algal turf cover decreased with increasing grazer and scraper density, with steeper relationships observed at mid and deep reefs than in shallow reefs. In contrast, algal turf cover slightly increased with increasing grazer and browser biomass at deep reefs. Considering fish size, algal turf cover increased with larger grazer and scrapers at mid and deep reefs. The results indicate that herbivorous fish density, rather than biomass, is a better indicator of reductions in algal turf cover and resulting coral-algal balance on Hawaiian reefs, where smaller fish exert greater top-down control on cover than larger fish. Despite significant differences in herbivorous fish compositions, length-frequency distributions and fishing intensities across depth, algal turf cover remains similar across depths. Increases in fishing would have a disproportionately negative impact in deep than shallow reefs due to a lower overall fish density, where grazing functions in deep reefs are maintained by significantly fewer and smaller grazers and browsers, and larger scrapers, than in shallow reefs. Developing an understanding of patterns of algal turf herbivory by depth is important to understanding the spatial scale at which herbivory and regime shifts operate.

  相似文献   

5.
The biomass of large herbivorous grazing fish on the shallow reef crest of Myrmidon Reef, Great Barrier Reef, is 7.0 times that on the reef slope (15 m depth), and 2.3 times that on the reef flat. Biomass of algal turfs on the crest was only 1.4 and 1.0 times that on the slope and flat, respectively. In contrast, rate of production of algal turfs on the crest was 5.3 and 2.8 times that on the slope and flat, respectively. A multiple correlation between large grazer biomass, algal turf biomass, and algal turf production across the three zones showed that only rate of algal production correlated significantly with large grazer biomass (algal production p=0.007, algal biomass p=0.418). This result suggests that large grazers may aggregate in zones of highest algal turf production. The mechanisms by which fish respond to habitat-specific differences in food production remain unclear.  相似文献   

6.
Previous research has indicated that many rocky intertidal macrophyte communities in southern California, and other locations around the world, have shifted from larger, highly productive, fleshy seaweeds toward a smaller, less productive, disturbance‐tolerant flora. In widespread decline are ecologically important, canopy‐forming, brown seaweeds, such as the southern California rockweed species Silvetia compressa. Restoration efforts are common for depleted biogenic species in other habitats, but restoration within rocky intertidal zones, particularly on wave‐exposed coasts, has been largely unexplored. In two phases, we attempted to restore Silvetia populations on a southern California shore by transplanting live plants and experimentally investigating factors that affect their survival. In Phase I, we implemented a three‐way factorial design where juvenile Silvetia thalli were transplanted at four sites with a combination of simulated canopy and herbivore exclusion treatments. Transplant survival was low, although enhanced by the presence of a canopy; site and herbivore presence did not affect survival. In Phase II, we used a two‐way factorial design, transplanting two size classes of rockweeds (juveniles and reproductive adults) on horizontal and partially shaded, north‐facing vertical surfaces at a target location where this rockweed has been missing since at least the 1970s. Transplant survival was moderate but lower than natural survival rates. Larger thalli exhibited significantly higher survival rates than smaller thalli in both the transplanted and naturally occurring populations, particularly on vertical surfaces. Higher mortality on horizontal surfaces may have been due to differences in desiccation stress and human trampling. Transplanting reproductive adults resulted in the subsequent recruitment of new individuals.  相似文献   

7.
The daily settlement of eggs and zygotes of the monoecious brown alga Pelvetia compressa (J. Agardh) De Toni was measured on artificial substrata in areas inside and outside patches of adults in the high intertidal zone of central California. Settlement was generally 1–2 orders of magnitude higher under the adult canopy. This pattern seems to be due to the synchronous release of gametes during the daytime low tide. The release of gametes also appears periodic over longer time scales (e.g., 3- and 14-day cycles). In spite of the high availability of propagules under the adult canopy, juveniles were most abundant outside patches, where propagule availability was lower. In both areas, juveniles were disproportionately associated with patches of a red algal turf [primarily Endocladia muricata (Postels & Ruprecht) J. Agardh and Masticarpus papillata (C. Agardh) Kützing]. The turf, which is less common under the P. compressa canopy, may offer protection from dislodgment, grazing, and/or desiccation and thus facilitate recruitment at this site. Overall, post-settlement processes appear more important in determining population structure than does the availability of propagules in areas in and around patches of adults. However, the apparent small range of dispersal of P. compressa may make propagule availability an important limitation to the establishment of new populations and may restrict gene flow between populations. Received: 31 October 1997 / Accepted: 31 August 1998  相似文献   

8.
动物对植物的采食会刺激植物进行补偿性更新生长, 克隆整合效应能够通过分株之间的物质传输增强克隆植物的这种补偿生长。现今对克隆整合效应在箭竹(Fargesia)补偿更新中的作用仍未得到全面认识。2011年10月到2012年11月, 设立了糙花箭竹(Fargesia scabrida)和缺苞箭竹(F. denudata)各40个样方, 分别进行不剪除样方内分株和剪除样方内分株数量的25%、50%、75%四种模拟采食干扰处理, 并将样方四周的根状茎切断或保持连接。从2012年6月起观测并统计了箭竹分株种群的累积出笋率、总出笋率、补充率, 以及新生分株的株高、基径和单株生物量。结果表明: (1)在不剪除分株的样方, 切断根状茎连接显著增加了糙花箭竹的出笋率和补充率, 但降低了新生分株的株高和单株生物量, 也显著降低了缺苞箭竹的出笋率和补充率; (2)保持根状茎连接时, 25%的剪除强度仅仅降低了糙花箭竹新生分株的单株生物量; 同样在保持根状茎连接的条件下, 25%、50%的剪除强度使缺苞箭竹种群的补充率有所降低, 而切断根状茎后缺苞箭竹在25%的剪除强度下的分株补充率反而升高; (3) 75%的剪除强度并未影响两种箭竹新生分株数量更新, 但造成新生分株质量显著下降; 切断根状茎连接显著降低了糙花箭竹的新生分株的株高和基径, 对缺苞箭竹影响不显著。实验证明克隆整合影响了两种箭竹新生分株的萌发、存活和生长, 但不是两种箭竹进行补偿更新的主要机制, 仅在糙花箭竹分株种群受到重度采食干扰后的更新中才起到明显的促进作用; 两种箭竹均能在50%的剪除强度下通过补偿生长恢复种群的稳定, 75%的剪除强度则会造成箭竹新生分株质量的下降。  相似文献   

9.
A. J. Underwood 《Oecologia》1980,46(2):201-213
Summary The cover of foliose algae is sparse to non-existent above a low-level algal zone on many shores in N.S.W., except in rock-pools. Above this algal zone, encrusting algae, mostly Hildenbrandia prototypus, occupy most of the primary substratum on sheltered shores. Experimental manipulations at midtidal levels were used to test hypotheses about the effects of grazing by molluses and of physical factors during low tide on this pattern of algal community structure.Fences and cages were used to exclude grazers: molluscs grazed under roofs and in open areas. Cages and roofs provided shade, and decreased the harshness of the environment during low tide: fences and open areas had the normal environmental regime.In the absence of grazers, rapid colonization of Ulva and slower colonization by other foliose algae occurred in all experimental areas. The rate of colonization by Ulva sporelings was initially retarded on existing encrusting algae, but after a few months, cover of Ulva equalled that on cleared rock.Most species of algae only grew to maturity inside cages, and remained as a turf of sporelings inside fences. No foliose algae grew to a visible size in open, grazed areas. Grazing thus prevents the establishment of foliose algae above their normal upper limit on the shore, but the effects of physical factors during low tide prevent the growth of algae which become established when grazers are removed. Physical factors thus limit the abundance of foliose algae at mid-tidal levels.The recolonization of cleared areas by Hildenbrandia was not affected by the presence of a turf of sporelings, nor by the shade cast by roofs, but was retarded in cages where mature algae formed a canopy. Even under such a canopy, Hildenbrandia eventually covered as much primary substratum as in open, grazed areas. This encrusting alga is able to escape from the effects of grazing by having a tough thallus, and by its vegetative growth which allows individual plants to cover a lot of substratum, and by the tendency for new individuals to start growing from small cracks and pits in the rock, which are apparently inaccessible to the grazers.Mature foliose algae are removed from the substratum by waves, and many individual plants died during periods of hot weather. Sporelings in a turf were eliminated, after experimental fences were removed, by the combined effects of macroalgal grazers, which invaded the areas, and microalgal grarers which ate the turt from the edges inwards.The results obtained here are discussed with respect to other studies on limits to distribution of intertidal macroalgae, and the role of grazing in the diversity and structure of intertidal algal communities. Some problems of these experimental treatments are also discussed.  相似文献   

10.
Disturbance in coral reef environments commonly results in an algal community dominated by highly productive, small filamentous forms and cyanobacteria, collectively known as algal turf. Research on the types of disturbance responsible for this community structure has concentrated mainly on biological disturbance in the form of grazing, although physical and other forms of biological disturbances may be important in many coral reef areas. On the reef flat in Kaneohe Bay, Oahu, Hawaii, algal turfs grow primarily upon coral rubble that tumbles with passing swells. We manipulated the frequency of rubble tumbling in field experiments to mimic the effects of physical disturbance by abrasion and light reduction on algal biomass, canopy height, and community structure. Treatments approximated a gradient of disturbance intensities and durations that occur on the reef flat. Although sea urchins and herbivorous fishes are not widespread and abundant on the reef flat, biological disturbances to algal turf communities in the form of herbivory by small crabs and abrasion by tough macroalgae contributed significantly to the variation in algal turf biomass. Within all experiments increasing disturbance significantly reduced algal biomass and canopy heights and the community structure shifted to more disturbance-tolerant algal forms. This study shows that the chronic physical disturbances from water motion and biological disturbances other than grazing from large herbivores can control algal communities in coral reef environments.  相似文献   

11.
Field and culture studies on fucoid alga of the upper shore showed that their lower limits of distribution were determined largely by interspecific competition. Pelvetia canaliculata (L.) Dcne. et Thur., which is strictly confined to the highest algal zone, grew much more slowly, both in culture and on the shore, than did Fucus spiralis L., which occupies the zone immediately below Pelvetia. When transplanted to the Fucus spiralis zone, macroscopic Pelvetia thalli grew normally, but Pelvetia zygotes which germinated within this zone reached macroscopic size only when competing Fucus spiralis was repeatedly removed.Both species required high light levels to grow in culture, yet their embryos remained viable for long periods in total darkness. Thus, Pelvetia cannot grow in the shade of Fucus spiralis, but actual removal of the Pelvetia germlings from the Fucus spiralis zone must be affected by some other factor.F. spiralis grew vigorously when transplanted to M.T.L., a level at which it is normally rare. In culture, its embryos grew more slowly than those of the species found lower on the shore such as F. vesiculosus L. and F. serratus L.; hence interspecific competition may again be involvedYoung Ascophyltum nodosum (L.) Le Jol. plants grew almost as slowly as those of Pelvetia, yet Ascophyllum dominates the middle shore. In culture it showed only slightly greater tolerance of low light intensity than other fucoids but, unlike Pelvetia, persisted and grew beneath a Fucus canopy in the field. The possibility that differences in life history and palatibility to grazing molluscs contribute to the disparate competitive abilities of Pelvetia and Ascophyllum is discussed.  相似文献   

12.
We compared the community structure of benthic algae inside and outside pomacentrid damselfish (Stegastes nigricans) territories in a moat at Sesoko Island, Okinawa, Japan. S. nigricans maintained “algae farms” that were dominated by the filamentous rhodophyte, Womersleyella setacea. Species richness and biomass were higher inside damselfish territories than outside, while species diversity and evenness were higher outside. Detrended correspondence analysis (DCA) based on species composition showed that the dominance of W. setacea was maintained throughout the year in all samples collected from inside damselfish territories. The observed strong dominance of filamentous rhodophytes was consistent with the findings of most studies on damselfish territories worldwide. However, the dominance of a single species of alga and low species diversity inside the territories was in contrast to the findings of previous studies, in which the reduction of grazing pressure caused intermediate disturbance and enhanced algal species diversity. This discrepancy in algal species diversity inside the damselfish territories seems to have been caused by unique characteristics of the alga and the fish. W. setacea traps sediment, which reduces the availability of firm substrata for attachment and inhibits the recruitment of some algae. Moreover, S. nigricans “weeds” indigestible calcareous and thicker algae. The algal assemblage outside damselfish territories varied among samples, and included mat-forming cyanophytes (Calothrix aeruginosa and Calothrix codicola), a prostrate laminar phaeophyte (Padina sp.), thin and small-scaled algae (Cladophora sp. and Feldmannia indica), finely branched filamentous rhodophytes (Taenioma perpusillum and Herposiphonia obscura), and a coarsely branched rhodophyte (Gelidiopsis variabilis).

We placed artificial slate plates inside and outside damselfish territories, and showed that the W. setacea inside territories gradually increased in biomass, reaching the same levels of biomass and dominance as W. setacea on natural substrata. Outside the territories, the algal assemblage underwent succession from early colonizers, i.e., thin and small-scaled algae, to grazing-resistant algae such as mat-forming cyanophytes and prostrate laminar Padina sp. Under heavy grazing, the flora outside the territories was composed of early colonizers, grazing-resistant algae, and scattered erect algae that had probably escaped grazing by chance.

Our findings suggest that sediment trapped by the turf of W. setacea inhibited recruitment of some algae, and that moderate cropping and selective weeding by S. nigricans excluded grazing-resistant algae and prevented early colonizers and competitively superior algae from out-competing W. setacea. Consequently, low species diversity and a high-biomass “farm” suitable for harvesting was maintained.  相似文献   


13.
We investigated the process whereby juveniles of the kelp Agarum cribrosum escape grazing by the green sea urchin, Strongylocentrotus droebachiensis, on urchin barrens in the rocky subtidal zone in the Mingan Islands, northern Gulf of St. Lawrence. The highest recruitment of juvenile A. cribrosum occurred under the canopy of the large filamentous phaeophyte Desmarestia viridis, where urchin densities were markedly reduced, compared to the surrounding area. This pattern of distribution appeared to be related to the wave-induced sweeping motion of D. viridis, although currents may modify the back and forth motion of the alga by pushing the canopy towards a specific direction, thereby allowing urchins to invade the non-swept areas. The density of juveniles under D. viridis plants increased with plant size and increasing proximity to the holdfast. Living under D. viridis slightly reduced the growth rate of the A. cribrosum juveniles, but this loss in growth was clearly outweighed by the gain in protection from sea urchin grazing. The time scale over which D. viridis provides protection is in the order of months, as D. viridis is an annual alga that disappears in early autumn. This defensive association of juvenile A. cribrosum with D. viridis is possibly a successional step leading to the formation of mature stands of A. cribrosum.  相似文献   

14.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

15.
Photosynthesis/photon flux density (PFD) relationships were compared among some of the major components of sparse algal turfs (green endoliths, red crusts, red filaments, Crouania, Sphacelaria)/ from Tague Bay forereef St. Croix, U.S. Virgin Islands. Algal turfs grazed by the sea urchin Diadema antillarum were 2–10 times more productive per unit chl a than when not grazed by sea urchins. The maximum rate of net photosynthesis (Pnetmax) and saturation PFDs, but not the slope of the light-limited portion of the curve (α), differed significantly among the algal turf components examined. The hypothesis that increased biomass-specific primary productivity results from shifts in algal community structure was not supported because the maximum difference in photosynthesis between algal components was only a factor of two, and the less productive components were relatively more abundant under grazing. In the understory, green endoliths exhibited higher α and lower Pnetmax, suggesting shade adaptation. Photon flux density measurements taken with a fiber optic microprobe within the algal turfs indicated that photosynthesis of basal portions of algal filaments and red crusts are light-limited in ungrazed algal turfs. As self-shading changes with grazer-mediated canopy removal, algal sublayers will contribute differentially to whole turf primary productivity.  相似文献   

16.
全球已知有约800种榕属(Ficus)植物, 主要分布在热带, 部分种类延伸至亚热带地区。温度是限制榕‒蜂共生系统分布北界的主要因素, 也显著影响榕树及其榕小蜂的繁殖成功, 其中榕小蜂对温度的响应更加敏感。榕小蜂只有在一定的温度范围内才能保持正常的生理机能, 其对温度耐受能力直接影响榕果内小蜂种群数量和群落内种间关系。然而目前对榕小蜂温度耐受性的研究尚少, 榕小蜂的温度耐受能力如何影响榕果内小蜂的共存关系还未见报道。本文研究了分布于西双版纳的2种雌雄同株和1种雌雄异株榕树果内传粉榕小蜂和非传粉小蜂的温度耐受能力。结果表明: 3种传粉榕小蜂对高温的耐受性极差, 相对于雌雄同株的高榕(F. altissima)和聚果榕(F. racemosa)传粉榕小蜂, 雌雄异株的鸡嗉子榕(F. semicordata)传粉榕小蜂对低温有增强的耐受趋势。聚果榕小蜂群落结构显示: 在适宜其生长的西双版纳地区, 传粉榕小蜂的数量占绝对优势, 在温度较低的季节其数量显著减少; 而非传粉榕小蜂呈相反模式, 较强的温度耐受能力使其在低温的雾凉季维持了较高的种群数量。鸡嗉子榕果内非传粉小蜂Sycoscapter trifemmensis相对于Philotrypesis dunia有更强的温度耐受能力, 在种群数量和种间关系上有更多的竞争优势及数量。榕小蜂的温度耐受性差异在物种分布、种间关系的维持和共存上起了重要作用, 本研究结果为阐明榕小蜂种间共存的维持机制提供了科学依据。  相似文献   

17.
1. The model explores stoichiometric feedback effects between an alga and a grazer ( Daphnia ) in a simplified chemostat-type system in stagnant conditions or with fixed dilution rate.
2. When running the model with fixed stoichiometry and P-sufficient food, the grazer with highest requirements for phosphorus (P) will exert the most efficient control of algal biomass owing to more P being allocated to zooplankton biomass and less P recycled.
3. When including potential P-limitation of the grazer, the grazer with high P requirements (high P : C ratio) will be the least efficient grazer in a system with fluctuating and temporarily low P : C ratio in algae ( Q a).
4. Qualitatively deficient food will yield decreased growth efficiency in zooplankton. As Q a decreases, the grazer isocline for zero net growth is shifted upwards, and the required algal biomass for positive growth increases. There may then be a critical level of Q a below which the grazer with high P : C suffers negative population growth regardless of algal biomass. In cases with low minimum Q a and a P-demanding grazer, this may cause the system to enter an irreversible stage with high biomass of P-deficient phytoplankton which do not support zooplankton growth.
5. Cumulative primary production for scenarios with continuous P input is, in general, higher the more Q a is allowed to drop below saturation values, and highest when this is combined with a grazer with a high P : C ratio. The lower growth rate of P-deficient phytoplankton was compensated for by reduced success of the P-limited grazer, yielding low grazing pressure and resulting in larger phytoplankton biomass.  相似文献   

18.
Recruitment and mortality of early post-settlement stages of benthic algae   总被引:1,自引:0,他引:1  
Four transitional life history stages are generally recognized for benthic marine algae. On the basis of differences in size, we propose two more: young germlings and young juveniles. Three of these (spores or zygotes, young germlings, and germlings) are considered early post-settlement (EPS) stages. Many of the available data on recruitment and mortality were not collected with EPS stages specifically in mind, and considerable extrapolation and inference are required to interpret effects on early phases. Data on EPS stages, and grazing in particular, are based on the disappearance of early stages (laboratory or field experiments, including outplantings), on indirect information on mortality from manipulations of grazers or juvenile stages, and combinations of observation and manipulation. We also provide original data on the effects of water motion and canopy sweeping on zygote mortality.

The most notable finding is the variability in, and multiplicity of, factors preventing successful recruitment of early life stages. Six intrinsic and about 17 extrinsic factors and/or processes were reported to affect recruitment and mortality. Grazing, canopy, and turf effects appear to be most important, but less well studied factors such as desiccation and water motion may be as important for early stages. Our review indicates that recruitment is highly variable, even episodic, and that mortality at this period is high. Combined, these elements suggest that chance events during EPS stages may play a large role in survival, and perhaps the evolution of benthic algae.  相似文献   

19.
The effects of small-scale disturbances (80×30-cm plots) of canopy and grazers on intertidal assemblages were investigated in this 4-year experiment on sheltered rocky shores on the Swedish west coast. Canopy disturbances due to ice scouring were mimicked by removal of adult plants of the seaweed Ascophyllum nodosum (L.) Le Joli. Density of the main epilithic grazing gastropods, Littorina spp., was lowered by exclosure and handpicking. Based on earlier experiments in other areas, the general hypothesis was that canopy removal and grazer exclosure, alone or in combination, should increase the recruitment of A. nodosum or other fucoid juveniles, and change the structure of the understorey assemblage.There was an effect of canopy removal on the development of this assemblage, lasting for more than 31 months. Both increased and decreased abundances of species were found as short-term effects, but there was also a longer-term effect with increased abundance. Grazer exclosure was only effective in combination with canopy removal, causing a short-term increase in ephemeral green algae. Short-term effects of canopy removal were also the increase in recruitment of Semibalanus balanoides (Linnaeus) and the decrease of the red alga Hildenbrandia rubra (Sommerfelt) Meneghini. Fast recruitment and growth of fucoid species (Fucus serratus L. and F. vesiculosus L.) restored the canopy and conditions of the understorey within 18 months. Thus, the canopy removal changed the physical conditions for the understorey, making it possible for other species to coexist in this community. Surprisingly, no effect of canopy removal or grazer exclusion was found on the recruitment of juvenile A. nodosum, neither by canopy removal nor grazer exclosure. The lack of such effects might be due to the early mortality caused by other grazers (small, mobile crustaceans), or to the low density of periwinkles on these shores. However, despite the patchy and generally low recruitment of A. nodosum juveniles, observations suggested that the cover of A. nodosum in manipulated patches would return to initial levels, either by recruitment or regrowth of small holdfasts and from growth of edge plants.  相似文献   

20.
Zooplankton grazing impact on algae, heterotrophic flagellates and bacteria, as well as invertebrate predation on herbivorous zooplankton, were investigated in two sub-Antarctic lakes with extremely simple food chains. The two species of herbivorous zooplankton present in the lakes (the copepods boeckella michaelseni and Pseudoboeckella poppei) exerted substantial grazing pressure on algae. However, the dominant algal species exhibited properties that enabled them to avoid (large size or extruding spines, e.g. Staurastrum sp., Tribonema sp.) or compensate (recruitment from the sediment, Mallomonas sp.) grazing. There are only two potential invertebrate predators on the herbivorous copepods in the two lakes: the copepod Parabroteas sarsi and the diving beetle Lancetes claussi. Vertebrate predators are entirely abscent from sub-Antarctic lakes. Based on our experiments, we estimated that the predators would remove at most about 0.4% of the herbivorous copepods per day, whereas planktivorous fish, if present in the lakes, would have removed 5–17% of the zooplankton each day. Consequently, the invertebrate predators in these high-latitude lakes had only a marginal predation impact compared to the predation pressure on zooplankton in the presence of vertebrate predators in temperate lakes. The study of these simple systems with only two quantitatively functionally important trophic links, suggests that high grazing pressure foreces the algal community towards forms with grazer resistant adaptations such as large size, recruitment from another habitat, and grazer avoidance spines. We propose that due to such adaptations, predictions from food web theory are only partly corroborated, i.e. algal biomass actually increases with increasing productivity, although the grazer community is released from predation. In more species-rich and complex systems, e.g temperate lakes with three functionally important links, such adaptations are likely to be even more important, and, consequently, the observable effects of trophic interactions from top predators on lower trophic levels even more obscured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号