首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation to tryptophan independence after exposure to radiation at the monocrhomatic wavelengths of 254 and 365 nm was studied and compared in 7 strains of Escherichia coli B/r that differ in repair capability. Efficient mutation induction was obtained with both 254-nm and 365-nm radiation with strains WP2 (wild-type), WP2s (uvrA), WP6s (polA uvrA). Mutants were not induced at either wavelength in the lexA strain WP5 or the recA strains WP10 and WP100. These results support the induction of mutants with 365-nm radiation through the error-prone (SOS) pathway of postreplication repair. Log-log plots of tryptophan revertant data at 254 nm showed the expected slopes of approximately 2.0 over the entire influence range tested. In contrast, similar plots of revertant data at 365 nm were complex in all cases tested: at low fluence values (survival greater than 0.5) in all cases where reversion occurred the slopes were approximately 1.0, while at higher fluences (survival less than 0.5) the slopes of the log-log plots were approximately 3.0 with strains WP2s and WP6s, approximately 4.0 with strain WP6 and approximately 6.0 with strain WP2. Differential sensitivity of components of excision and postreplication repair systems to 365-nm radiation may account for the 2-part mutation curves obtained with uvr+ rec+ lex+ strains. It is proposed that efficient error-free repair of mutational lesions occurs at 365-nm fluences below 2–4×105 J m2−; at greater 365-nm fluences, error-free excision repair may be selectively inhibited, forcing a greater fraction of mutational lesions to be processed by the error-prone component of the postreplication repair system. The similarity of the mutational responses of WP2s and WP6 at 365 nm supports the selective inhibition of error-free excision repair.  相似文献   

2.
The influence of environmental (extracellular) pH on the sporulation rhythm in Neurospora crassa was investigated for wild-type (frq+) and the mutants chr, frq1, frq7, and frq8. In all mutants, including wild type, the growth rate was found to be influenced strongly by extracellular pH in the range 4-9. On the other hand, for the same pH range, the period length of the sporulation rhythm is little influenced in wild type, chr, and frq1. A loss of pH homeostasis of the period, however, was observed in the mutants frq7 and frq8, which also are known to have lost temperature compensation. Concerning the influence of extracellular pH on growth rates, a clear correspondence between growth rates and the concentration of available H2PO4- ion has been found, indicating that the uptake of H2PO4- may be a limiting factor for growth under our experimental conditions. The loss of pH compensation in the frq7 and frq8 mutants may be related to less easily degradable FRQ7,8 proteins when compared with wild-type FRQ. Results from recent model considerations and experimental results predict that, with increasing extra-and intracellular pH, the FRQ7 protein degradation increases and should lead to shorter period lengths. (Chronobiology International, 17(6), 733-750, 2000)  相似文献   

3.
The effects of altering the cell growth rate (physiological state) and DNA repair capacity (genetic state) on susceptibility to inactivation and mutagenesis by ethyl methanesulfonate (EMS) were studied in 4 strains of E. coli. Logarithmic and stationary phase cells of the polymerase I deficient mutant, P3478 polA, a recombination deficient mutant, DZ417 recA, and the respective parental strains, W3110pol+ and AB253 rec+, were exposed to EMS and the surviving fraction and mutant frequency determined. At the same EMS concentration both mutants were more susceptible to inactivation than the parental strains. In all 4 strains, log phase cells were more sensitive to inactivation than stationary cells. The surviving fraction of stationary cells exceeded log cells by a factor of 18 for polA, 6 for recA, and about 2 for the parental strains. In all strains, except recA, log phase cells exhibited higher spontaneous mutant frequencies than stationary phase cells. At the same concentration of EMS, survivors of both polA and recA showed more than 10-fold higher induced frequencies than the wild types. However, at the same survival levels the repair deficient mutants exhibited induced mutant frequencies comparable to the repair proficient strains. There was no significant effect of growth phase on EMS induced mutability in recA or the parental strains. In marked contrast, the polymerase I deficient mutant shows both a higher spontaneous frequency and a greater than 10-fold higher EMS induced mutant frequency in log phase cultures compared to stationary phase cultures. Our results support the hypothesis that cellular susceptibility to alkylating agents is influenced by both the genetic capability for repair and the particular physiological state of the cell.  相似文献   

4.
Galactose does not allow growth of pyruvate carboxylase mutants in media with ammonium as a nitrogen source, and inhibits growth of strains defective in phosphoglyceromutase in ethanol–glycerol mixtures. Starting with pyc1, pyc2, and gpm1 strains, we isolated mutants that eliminated those galactose effects. The mutations were recessive and were named dgr1-1 and dgr2-1. Strains bearing those mutations in an otherwise wild-type background grew slower than the wild type in rich galactose media, and their growth was dependent on respiration. Galactose repression of several enzymes was relieved in the mutants. Biochemical and genetic evidence showed that dgr1-1 was allelic with GAL2 and dgr2-1 with GAL4. The results indicate that the rate of galactose consumption is critical to cause catabolite repression.  相似文献   

5.
6.
R plasmids pMG1, R2, R931 and pMG15 increased the survival of Pseudomonas aeruginosa exposed to ultraviolet radiation (u.v.) in the wild type, and uvr and polA mutants but did not alter the u.v.-response of a recA mutant. The R plasmid RPL11 reduced u.v.-survival in the wild type, and uvr and polA mutants but did not alter the u.v.-response of a recA host. All the plasmids enhanced the level of spontaneous and u.v.-induced back mutation (Trp+) in a trpB1 strain. The effect of sublethal concentration of sodium arsenite following u.v.-irradiation was examined. It was concluded that in strains trpB1(pMG1) and trpB1(R931), u.v.-protection is determined by a recA+-dependent, arsenite-sensitive repair pathway, whereas in strains trpB1(R2) and trpB1(pMG15), u.v.-protection is determined by a recA+-dependent, arsenite-insensitive step in DNA repair.  相似文献   

7.
In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respirofermentative metabolism at high D. We hypothesized that the onset of fermentative metabolism is related with the catabolite repression or glucose repression effect. To test this hypothesis, we have investigated the physiological behavior in glucose-limited continuous cultures of S. cerevisiae strain CEN.PK122 and isogenic mutants, snf1 (cat1) and snf4 (cat3), defective in proteins involved in the release from glucose repression and the mutant in glucose repression mig1. We analyzed the behavior of the wild type and mutant strains at steady state in chemostat cultures as a function of D. Wild-type cells displayed respiratory metabolism up to a D of 0.2 h−1. snf1 and snf4 mutants started fermenting after a D of 0.1 and 0.15 h−1, respectively. The latter behavior was not due to an impairment of respiration since their specific rate of oxygen consumption was similar or even higher than that shown by the wild type. The snf1 strain displayed much lower yields than the wild type and the other mutants in the whole range of D studied. We conclude that the onset of fermentative metabolism in yeast growing in chemostat cultures is related with glucose repression.  相似文献   

8.
高Ca2+环境对许多植物的生长不利, 因此研究植物对高Ca2+环境的适应机制非常重要。研究发现, 拟南芥(Ara- bidopsis thaliana)镁转运体MGT7功能缺失突变体mgt7-1mgt7-2具有高Ca2+敏感表型: 在高Ca2+培养基上, 相对于野生型Col-0, 突变体叶鲜重显著下降, 但根长无显著差异。高Ca2+MGT7启动子活性和包括MGT7在内的镁转运体基因表达无显著调节作用。Col-0与mgt7突变体之间, 在外加Ca2+诱导细胞质Ca2+瞬时升高和Ca2+含量方面无显著差异; 但是, 在正常和高Ca2+培养基上, mgt7突变体的Mg含量均显著低于Col-0。高Ca2+显著抑制Col-0和mgt7突变体内Mg的积累。因此我们假设, mgt7突变体的高Ca2+敏感表型是由于其体内Mg含量下降导致的。进一步的研究证实, 只有增加培养基中Mg2+的含量, 而不是N、P、K和S, 才可以使突变体的高Ca2+敏感表型得到恢复。  相似文献   

9.
Cytotoxicity and mutagenesis by streptozotocin, BCNU, nitrogen mustard, and mitomycin C were evaluated in E. coli mutants deficient in SOS repair, SOS-mediated mutagenesis, the adaptive response, and mutants that engage in aberrant mismatch repair. The results demonstrate that premutagenic lesions are caused by nitrogen mustard, BCNU and streptozotocin that are not repaired by ada or recognized by umuDC. Further, recA mutants were hypomutable after exposure to nitrogen mustard, BCNU, and streptozotocin compared to wild type. With the exception of the monofunctional nitrosourea, streptozotocin, both recA and uvrA gene products contribute to the repair of DNA damage caused by the alkylating agents tested. In the case of streptozotocin, although recA mutants were more sensitive than wild type, uvrA mutants were not. Moreover, while ada and alkA E. coli mutants showed increased sensitivity to streptozotocin, they were not more sensitive to the other alkylating agents evaluated.  相似文献   

10.
Twenty-six Helicobacter pylori targeted mutant strains with deficiencies in oxidative stress combating proteins, including 12 double mutant strains were analyzed via physiological and proteomic approaches to distinguish the major expression changes caused by the mutations. Mutations were introduced into both a MtzS and a MtzR strain background. Most of the mutations caused increased growth sensitivity of the strains to oxygen, and they all exhibited clear compensatory up-expression of oxidative stress resistance proteins enabling survival of the bacterium. The most frequent up-expressed oxidative stress resistance factor (observed in 16 of the mutants) was the iron-sequestering protein NapA, linking iron sequestration with oxidative stress resistance. The up-expression of individual proteins in mutants ranged from 2 to 10 fold that of the wild type strain, even when incubated in a low O2 environment. For example, a considerably higher level of catalase expression (4 fold of that in the wild-type strain) was observed in ahpC napA and ahpC sodB double mutants. A Fur mutant up-expressed ferritin (Pfr) protein 20-fold. In some mutant strains the bacterial DNA is protected from oxidative stress damage apparently via overexpression of oxidative stress-combating proteins such as NapA, catalase or MdaB (an NADPH quinone reductase). Our results show that H. pylori has a variety of ways to compensate for loss of major oxidative stress combating factors.  相似文献   

11.
Type 2C protein phosphatases (PP2Cs) are the largest protein phosphatase family. PP2Cs dephosphorylate substrates for signaling in Arabidopsis, but the functions of most PP2Cs remain unknown. Here, we characterized PP2C49 (AT3G62260, a Group G PP2C), which regulates Na+ distribution under salt stress and is localized to the cytoplasm and nucleus. PP2C49 was highly expressed in root vascular tissues and its disruption enhanced plant tolerance to salt stress. Compared with wild type, the pp2c49 mutant contained more Na+ in roots but less Na+ in shoots and xylem sap, suggesting that PP2C49 regulates shoot Na+ extrusion. Reciprocal grafting revealed a root‐based mechanism underlying the salt tolerance of pp2c49. Systemic Na+ distribution largely depends on AtHKT1;1 and loss of function of AtHKT1;1 in the pp2c49 background overrode the salt tolerance of pp2c49, resulting in salt sensitivity. Furthermore, compared with plants overexpressing PP2C49 in the wild‐type background, plants overexpressing PP2C49 in the athtk1;1 mutant background were sensitive to salt, like the athtk1;1 mutants. Moreover, protein–protein interaction and two‐voltage clamping assays demonstrated that PP2C49 physically interacts with AtHKT1;1 and inhibits the Na+ permeability of AtHKT1;1. This study reveals that PP2C49 negatively regulates AtHKT1;1 activity and thus determines systemic Na+ allocation during salt stress.  相似文献   

12.
The utilization of the specific-locus assay in the ad-3 region of two-component heterokaryons of Neurospora crassa is compared with that of other eukaryotic assay systems for the evaluation of the mutagenic effects of environmental chemicals. In contrast to other in vitro specific-locus assays, the Neurospora assay can detect mutations not only at the ad-3A and ad-3B loci but also recessive lethal mutations elsewhere in the genome. Mutational damage in this system can be characterized readily by means of classical genetic techniques involving heterokaryon tests to determine genotype, and allelic complementation among ad-3BR mutations. The percentages of ad-3BR mutations showing allelic complementation with polarized or nonpolirized complementation patterns provide a presumptive identification of the genetic alterations at the molecular level in individual mutants. Dikaryon and trikaryon tests (using 3 strains carrying multilocus deletion mutations as tester strains) distinguish ad-3 mutations resulting from gene/point mutation, multilocus deletion mutation, and various types of multiple-locus mutation.

The array of ad-3 mutations recovered from forward-mutation experiments can be expressed in terms of Mutational Spectra, which make it possible to make comparisons of mutational types between different doses of the same mutagen, different mutagens, or the effects of the same mutagen on different strains.

Another important feature of this specific-locus assay system is that the effects of mutagens can be studied in both DNA excision repair-proficient (H-12) and -deficient (H-59) two-component heterokaryons to evaluate both quantitative and qualitative differences between the spectra of induced d-3  相似文献   


13.
The effects of caffeine and acriflavine on cell survival, single-strand deoxyribonucleic acid break formation, and postreplication repair in Escherichia coli wild-type WP2 and WP2 uvrA strains after ultraviolet irradiation was studied. Caffeine (0.5 mg/ml) added before and immediately after ultraviolet irradiation inhibited single-strand deoxyribonucleic acid breakage in wild-type WP2 cells. Single-strand breaks, once formed, were no longer subject to repair inhibition by caffeine. At 0.5 to 2 mg/ml, caffeine did not affect postreplication repair in uvrA strains. These data are consistent with the survival data of both irradiated WP2 and uvrA strains in the presence and absence of caffeine. In unirradiated WP2 and uvrA strains, however, a high caffeine concentration (greater than 2 mg/ml) resulted in gradual reduction of colony-forming units. At a concentration insufficient to alter survival of unirradiated cells, acriflavine (2 microgram/ml) inhibited both single-strand deoxyribonucleic acid breakage and postreplication repair after ultraviolet irradiation. These data suggest that although the modes of action for both caffeine and acriflavine may be similar in the inhibition of single-strand deoxyribonucleic acid break formation, they differ in their mechanisms of action on postreplication repair.  相似文献   

14.
邱文  兰咏哲  王迪  黄劲  廖万清  康颖倩 《菌物学报》2019,38(8):1341-1349
新型隐球菌是一种具有荚膜的重要临床致病真菌。本课题组在前期工作中发现CNAG_01032基因可能引起不同来源菌株的表型差异,本研究在此基础上以新型隐球菌临床来源菌株IFM56800(C1)、IFM56769(C2)为背景构建CNAG_01032基因敲除突变体,并检测突变株和野生型菌株经典毒力因子变化情况;使用API 20C AUX测试系统测试突变株和野生型菌株对19种糖的利用情况;使用尾静脉注射法感染BALB/c雌性小鼠进行致病性检测。结果显示:成功构建以临床株C1、C2为背景的CNAG-01032基因敲除突变株;突变株在37℃生长、黑色素产生与野生型菌株无显著差异,但荚膜厚度分别比C1、C2减少16.4%、18.2%;两基因敲除菌株均不能分解利用纤维二糖;致病性与野生型菌株无显著差异。新型隐球菌CNAG_01032基因可能参与临床来源菌株IFM56800、IFM56769的荚膜合成和纤维二糖的代谢。  相似文献   

15.
It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a). In this work, we observed that an increase of UV-resistance by pKY1 in the dark is not apparent in strains with a mutation in either uvrA, uvrB, uvrC, lexA, recBC or recF. The sensitivity of recA lexA and recA recBC multiple mutants to UV is suppressed by the plasmid but that of recA uvrA, recA uvrB and recA uvrC is not. Host-cell reactivation of UV-irradiated lambda phage is slightly more efficient in the recA/pKY1 strain compared with the parental recA strain. On the other hand, the recA and recA/pKY1 strains do not differ significantly in the following properties: Hfr recombination, induction of lambda by UV, and mutagenesis. We suggest that dark repair of PRE is correlated with its capacity of excision repair.  相似文献   

16.
Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and uvrD3 strains of Escherichia coli K12. A large stimulation of repair replication was observed in the uvrD3 strain, compaired to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains.  相似文献   

17.
18.
陈成  董爱武  苏伟 《植物学报》2018,53(1):42-50
HIRA是组蛋白H3.3的特异分子伴侣, 在组蛋白H3.3掺入染色质的过程中发挥重要作用。研究表明, HIRA在哺乳动物胚胎发育和DNA损伤修复过程中不可或缺。而目前人们对于植物中HIRA同源基因功能的研究相对较少。该研究主要关注拟南芥(Arabidopsis thaliana) AtHIRA基因在植物体细胞同源重组以及减数分裂同源重组过程中的功能。将体细胞同源重组和减数分裂同源重组报告系统分别导入野生型和hira-1突变体后统计同源重组频率, 结果表明在正常生长条件下及在伯莱霉素(bleomycin)或UV-C处理条件下, hira-1突变体体细胞的分子内和分子间同源重组频率均低于野生型。而在正常生长条件下, 野生型与hira-1突变体花粉母细胞间的减数分裂同源重组频率没有明显差异, hira-1突变体的DNA损伤水平与野生型接近。qRT-PCR结果表明, DNA损伤修复相关基因RAD51RAD54hira-1突变体中的表达水平均高于野生型。此外, 盐胁迫处理实验表明, hira-1突变体对于高盐胁迫更加敏感。综上, AtHIRA在拟南芥体细胞同源重组及盐胁迫响应过程中发挥了一定作用。  相似文献   

19.
Molecular characterisation of the Stc mutation of Escherichia coli K-12   总被引:3,自引:0,他引:3  
R. Misra  P. Reeves   《Gene》1985,40(2-3):337-342
The previously described Stc - (suppressor of TolC) mutation modifies the phenotype of tolC mutants from OmpF to OmpF+. Restriction mapping of chromosomal DNA from Stc + and Stc strains was performed to investigate the nature of the mutation which was shown to be a deletion, upstream of the ompC gene. DNA from the region of the deletion was cloned into pUC18 and a 650-bp PstI-EcoRI fragment was sequenced. The deletion started 49 bp upstream of the AUG start codon of the ompC gene, thus removing part of the ompC promoter and the whole of the micF gene. We suggest that the deletion of micF gives rise to the Stc phenotype since the effect of micF expression is assumed to reduce ompF expression, and the Stc phenotype involves increase in ompF expression.  相似文献   

20.
After UV irradiation, Escherichia coli uvrA mutant cells show higher survival on minimal than on rich growth medium, i.e., they show minimal-medium recovery. This effect of rich growth medium on survival is not observed in a uvrA mutant carrying an mmrA1 mutation, and the uvrA mmrA strain showed the same survival rate on minimal and rich growth media as the uvrA strain did on minimal medium plates. The mmrA1 mutation was isolated as a hidden mutation from a uvrA polA mutant strain and shown to map at 84.3 min on the E. coli K-12 linkage map. In contrast to the uvrA strain, the repair of DNA daughter strand gaps was not inhibited in the uvrA mmrA strain by rich growth medium after irradiation. However, the uvrA and uvrA mmrA strains were similar in their ability to repair DNA when compared in minimal medium. These data are consistent with the idea that the mmr gene product is not involved directly in the repair of UV radiation-induced DNA damage, but rather allows rich growth medium to inhibit a portion of postreplication repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号